Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker breakthrough could improve Parkinson's treatment

16.08.2016

A new, non-invasive way to track the progression of Parkinson's disease could help evaluate experimental treatments to slow or stop the disease's progression.

University of Florida researchers used functional magnetic resonance imaging to reveal areas where Parkinson's disease and related conditions cause progressive decline in brain activity.


The fMRI activity of a person with Parkinson's disease is shown at baseline and one year later. The areas of high activity (orange) become areas of low activity (blue) in the second scan, showing progressive deterioration.

Courtesy of David Vaillancourt

The study, funded by the National Institutes of Health, was published in the journal Neurology.

While current treatments focus on controlling symptoms, biomarkers provide a quantifiable way to measure how medications address not just symptoms, but the neurological changes behind them.

Previous studies have used imaging techniques that require the injection of a drug that crosses the blood-brain barrier.

"Our technique does not rely upon the injection of a drug. Not only is it non-invasive, it's much less expensive," said David Vaillancourt, Ph.D., a professor in UF's Department of Applied Physiology and Kinesiology and the study's senior author.

The study's authors - which included researchers from UF's College of Health and Human Performance and College of Medicine as well as the Medical University of South Carolina - used functional magnetic resonance imaging to evaluate five areas of the brain that are key to movement and balance. A year after the baseline study, the 46 Parkinson's patients in the study showed declining function in two areas: the primary motor cortex and putamen. Parkinson's-related disorders evaluated in the study also showed declines: The 13 subjects with multiple system atrophy had reduced activity in three of the five areas, while the 19 with progressive supranuclear palsy showed declines in all five areas. The brain activity of the 34 healthy control subjects did not change.

"For decades, the field has been searching for an effective biomarker for Parkinson's disease," said Debra Babcock, M.D., Ph.D., program director at the NIH's National Institute of Neurological Disorders and Stroke. "This study is an example of how brain imaging biomarkers can be used to monitor the progression of Parkinson's disease and other neurological disorders."

The finding builds on a 2015 UF study that was the first to document progressive deterioration from Parkinson's via MRI, showing an increase in unconstrained fluid in an area of the brain called the substania nigra. An NIH-funded study beginning in November will use both biomarkers to test if a drug approved for symptom relief can slow or stop progressive degeneration.

Katrina Gwinn, M.D., also a program director at the NIH's National Institute of Neurological Disorders and Stroke, described the effort to identify biomarkers as "an essential part of moving towards the development of treatments that impact the causes, and not just the symptoms, of Parkinson's disease."

Media Contact

David Vaillancourt
vcourt@ufl.edu
352-294-1770

 @uflorida

http://www.ufl.edu 

David Vaillancourt | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>