Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism's early neuronal 'neighborhood'

09.04.2015

SDSU scientists find that in children with autism, sensorimotor regions of the brain become overconnected at the expense of later-developing higher-order functions

In early childhood, the neurons inside children's developing brains form connections between various regions of brain "real estate."


These fMRI scans show regions of over- and underconnectivity between the cerebellum and cerebral cortex in young people with autism spectrum disorder.

Credit: SDSU Marketing and Communications

As described in a paper published last week in the journal Biological Psychiatry, cognitive neuroscientists at San Diego State University found that in children and adolescents with autism spectrum disorder, the connections between the cerebral cortex and the cerebellum appear to be overdeveloped in sensorimotor regions of the brain.

This overdevelopment appears to muscle in on brain "real estate" that in typically developing children is more densely occupied by connections that serve higher cognitive functioning.

The study represents the first ever systematic look at connections between the entire cerebral cortex and the cerebellum using fMRI brain imaging, and its findings provide another piece in the puzzle that could one day lead researchers to develop a reliable brain-based test for identifying autism.

Back to the cerebellum

Several decades ago, scientists reported findings that certain regions of the cerebellum -- a brain region involved in motor control, but also in cognitive, social, and emotional functions -- were often smaller in people with autism than in typically developing people.

That sparked a brief flurry of research activity exploring the cerebellum's potential role in the disorder. Unfortunately, the direction never truly panned out for researchers hoping for a big breakthrough in understanding, said the study's corresponding author, SDSU psychologist Ralph-Axel Müller.

"Eventually, interest in the cerebellum waned due to a lack of consistency in the findings," he said.

Hoping that advances in brain imaging technology would reveal new insights, Müller, working with the study's first author Amanda Khan, looked back to the cerebellum for their study. Khan is a former master's student at SDSU and now a doctoral candidate at Suffolk University in Boston.

Over- and underconnected

The researchers directed 56 children and adolescents, half with autism and half without the disorder, to fixate on a focal point while thinking about nothing in particular, using fMRI brain imaging technology to scan the children's brains as they produced spontaneous brain activity. Capturing this spontaneous activity is crucial to honing in on what are essentially baseline neuronal patterns.

The imaging results revealed that the participants with autism had far stronger neuronal connectivity between sensorimotor regions of the cerebellum and cerebral cortex than did their counterparts without autism. Conversely, the participants with autism had less connectivity between regions involved in higher-order cognitive functions such as decision-making, attention and language.

The sensorimotor connections between the cerebral cortex and cerebellum mature during the first few years of life, when the brains of children with autism grow larger in volume than typically developing children, Müller explained. Connections that serve higher cognitive functions develop later, after this period of overgrowth.

"Our findings suggest that the early developing sensorimotor connections are highly represented in the cerebellum at the expense of higher cognitive functions in children with autism," he said. "By the time the higher cognitive functions begin to come online, many of the connections are already specialized. If a particular part of the brain is already functionally active in one domain, there may be no reason for the brain to switch it over to another domain later in life."

Neural neighborhood

Returning to the real estate metaphor, it's as if most of the available land has already been scooped up by sensorimotor connections before the higher-order cognitive function connections have a chance to move into the neighborhood.

The findings could help scientists and clinicians better understand exactly how abnormalities during brain development lead to various types of autism spectrum disorder. Müller hopes his work will not only contribute to a brain-based diagnosis of autism, but also be a step towards identifying its various subtypes and underlying genetic factors.

"We still don't understand what in the brain makes a kid autistic," he said. "You can't look at a scan and say, 'There it is.' We're doing the groundwork of finding brain variables that might be biomarkers for autism and its subtypes."

###

SDSU graduate students Aarti Nair and Christopher Keown, also contributed to the study, as did University of California, San Diego, graduate student Michael Datko and Alliant International University psychologist Alan Lincoln.

About San Diego State University

San Diego State University is a major public research institution offering bachelor's degrees in 89 areas, master's degrees in 78 areas and doctorates in 21 areas. The university provides transformative experiences, both inside and outside of the classroom, for its 34,000 students. Students participate in research, international experiences, sustainability and entrepreneurship initiatives, and a broad range of student life and leadership opportunities. The university's rich campus life features opportunities for students to participate in, and engage with, the creative and performing arts, a Division I athletics program and the vibrant cultural life of the San Diego region. For more information, visit http://www.sdsu.edu.

Media Contact

Natalia Elko
natalia.elko@mail.sdsu.edu
619-594-2585

 @SDSU

http://www.sdsu.edu 

Natalia Elko | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>