Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astonishing regeneration potential of the pancreas

21.08.2014

Up until puberty, the pancreas is more adaptable and possesses a greater potential for self-healing than had previously been assumed. This is the conclusion reached by a study with mice funded through the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63).

Approximately 40,000 persons in Switzerland suffer from type-1 diabetes. The illness is caused by the loss of so-called pancreatic beta cells, the cells that produce the hormone insulin, which is essential for regulating the use of sugar in the body.

Since beta cells do not regenerate, scientists have traditionally assumed that the loss of these cells is irreversible; indeed, diabetic patients require insulin injections for life.

Previously unknown mechanism

Four years ago, the research team of Pedro Herrera (University of Geneva) first cast doubt on this assumption when they demonstrated that a few alpha cells in the pancreas of genetically modified diabetic mice changed into beta cells.

Alpha cells normally produce the blood sugar-raising hormone glucagon, but in diabetic mice they started producing insulin instead. Herrera's team has now made a second discovery, which has just been published in the journal "Nature" (*): in prepubescent mice the pancreas is capable of compensating the loss of insulin-producing beta cells. "This is achieved by a mechanism unknown until now," says Herrera.

The process involves the reversion of delta cells (which produce somatostatin, another pancreatic hormone) to a precursor-like cell state, with proliferation and later reconstitution of the populations of beta and delta cells.

In contrast to the conversion of alpha cells, which only concerns a small fraction of the alpha cell population, the new mechanism involving delta cell fate change is a more efficient way of offsetting the loss of beta cells and thus diabetes recovery. Yet while alpha cells can reprogram into insulin production also in old mice, the ability of delta cells to do so is limited and does not extend beyond puberty.

Human pancreas can regenerate too

Although Herrera's group has investigated the versatility of pancreatic cells in mice, several observations in diabetic patients suggest that the human pancreas is capable of transformation too. "The new mechanism shows that the pancreas is much more plastic and – at least during childhood – possesses a much greater potential for self-healing than we had previously assumed," says Herrera.

“There is still a long way to go before diabetes patients might be able to benefit from these findings, but the discovery that delta cells have a high degree of plasticity points to a hitherto unsuspected option for therapeutic intervention.”

(*) S. Chera, D. Baronnier, L. Ghila, V. Cigliola, J. N. Jensen, G. Gu, K. Furuyama, F. Thorel, F. M. Gribble, F. Reimann and P. L. Herrera (2014). Diabetes Recovery By Age-Dependent Conversion of Pancreatic Delta-Cells Into Insulin Producers. Nature online: doi: 10.1038/nature13633
(Journalists can obtain a pdf file from the SNSF by writing to: com@snf.ch)

National Research Programme

"Stem Cells and Regenerative Medicine" (NRP 63)
The aim of NRP 63 is to obtain basic information about the nature, functioning and convertibility of stem cells. NRP 63 also hopes to strengthen stem cell research in Switzerland. It was launched in 2010 and comprises 12 projects. NRP 63 has a budget of CHF 10 million and is scheduled to end next year.


Contact

Prof Pedro L. Herrera
Department of Genetic Medicine and Development
Faculty of Medicine, University of Geneva
Rue Michel-Servet 1
CH-1211 Geneva
Phone: +41 22 379 52 25
E-mail: pedro.herrera@unige.ch

Weitere Informationen:

http://www.snsf.ch/media
http://www.nrp.ch/e

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: Medicine NRP beta diabetic hormone mechanism pancreas pancreatic producing regenerate

More articles from Health and Medicine:

nachricht Nanoparticle versus cancer
21.07.2016 | Lomonosov Moscow State University

nachricht Titanium + gold = new gold standard for artificial joints
21.07.2016 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>