Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astonishing regeneration potential of the pancreas

21.08.2014

Up until puberty, the pancreas is more adaptable and possesses a greater potential for self-healing than had previously been assumed. This is the conclusion reached by a study with mice funded through the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63).

Approximately 40,000 persons in Switzerland suffer from type-1 diabetes. The illness is caused by the loss of so-called pancreatic beta cells, the cells that produce the hormone insulin, which is essential for regulating the use of sugar in the body.

Since beta cells do not regenerate, scientists have traditionally assumed that the loss of these cells is irreversible; indeed, diabetic patients require insulin injections for life.

Previously unknown mechanism

Four years ago, the research team of Pedro Herrera (University of Geneva) first cast doubt on this assumption when they demonstrated that a few alpha cells in the pancreas of genetically modified diabetic mice changed into beta cells.

Alpha cells normally produce the blood sugar-raising hormone glucagon, but in diabetic mice they started producing insulin instead. Herrera's team has now made a second discovery, which has just been published in the journal "Nature" (*): in prepubescent mice the pancreas is capable of compensating the loss of insulin-producing beta cells. "This is achieved by a mechanism unknown until now," says Herrera.

The process involves the reversion of delta cells (which produce somatostatin, another pancreatic hormone) to a precursor-like cell state, with proliferation and later reconstitution of the populations of beta and delta cells.

In contrast to the conversion of alpha cells, which only concerns a small fraction of the alpha cell population, the new mechanism involving delta cell fate change is a more efficient way of offsetting the loss of beta cells and thus diabetes recovery. Yet while alpha cells can reprogram into insulin production also in old mice, the ability of delta cells to do so is limited and does not extend beyond puberty.

Human pancreas can regenerate too

Although Herrera's group has investigated the versatility of pancreatic cells in mice, several observations in diabetic patients suggest that the human pancreas is capable of transformation too. "The new mechanism shows that the pancreas is much more plastic and – at least during childhood – possesses a much greater potential for self-healing than we had previously assumed," says Herrera.

“There is still a long way to go before diabetes patients might be able to benefit from these findings, but the discovery that delta cells have a high degree of plasticity points to a hitherto unsuspected option for therapeutic intervention.”

(*) S. Chera, D. Baronnier, L. Ghila, V. Cigliola, J. N. Jensen, G. Gu, K. Furuyama, F. Thorel, F. M. Gribble, F. Reimann and P. L. Herrera (2014). Diabetes Recovery By Age-Dependent Conversion of Pancreatic Delta-Cells Into Insulin Producers. Nature online: doi: 10.1038/nature13633
(Journalists can obtain a pdf file from the SNSF by writing to: com@snf.ch)

National Research Programme

"Stem Cells and Regenerative Medicine" (NRP 63)
The aim of NRP 63 is to obtain basic information about the nature, functioning and convertibility of stem cells. NRP 63 also hopes to strengthen stem cell research in Switzerland. It was launched in 2010 and comprises 12 projects. NRP 63 has a budget of CHF 10 million and is scheduled to end next year.


Contact

Prof Pedro L. Herrera
Department of Genetic Medicine and Development
Faculty of Medicine, University of Geneva
Rue Michel-Servet 1
CH-1211 Geneva
Phone: +41 22 379 52 25
E-mail: pedro.herrera@unige.ch

Weitere Informationen:

http://www.snsf.ch/media
http://www.nrp.ch/e

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: Medicine NRP beta diabetic hormone mechanism pancreas pancreatic producing regenerate

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>