Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astonishing regeneration potential of the pancreas

21.08.2014

Up until puberty, the pancreas is more adaptable and possesses a greater potential for self-healing than had previously been assumed. This is the conclusion reached by a study with mice funded through the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63).

Approximately 40,000 persons in Switzerland suffer from type-1 diabetes. The illness is caused by the loss of so-called pancreatic beta cells, the cells that produce the hormone insulin, which is essential for regulating the use of sugar in the body.

Since beta cells do not regenerate, scientists have traditionally assumed that the loss of these cells is irreversible; indeed, diabetic patients require insulin injections for life.

Previously unknown mechanism

Four years ago, the research team of Pedro Herrera (University of Geneva) first cast doubt on this assumption when they demonstrated that a few alpha cells in the pancreas of genetically modified diabetic mice changed into beta cells.

Alpha cells normally produce the blood sugar-raising hormone glucagon, but in diabetic mice they started producing insulin instead. Herrera's team has now made a second discovery, which has just been published in the journal "Nature" (*): in prepubescent mice the pancreas is capable of compensating the loss of insulin-producing beta cells. "This is achieved by a mechanism unknown until now," says Herrera.

The process involves the reversion of delta cells (which produce somatostatin, another pancreatic hormone) to a precursor-like cell state, with proliferation and later reconstitution of the populations of beta and delta cells.

In contrast to the conversion of alpha cells, which only concerns a small fraction of the alpha cell population, the new mechanism involving delta cell fate change is a more efficient way of offsetting the loss of beta cells and thus diabetes recovery. Yet while alpha cells can reprogram into insulin production also in old mice, the ability of delta cells to do so is limited and does not extend beyond puberty.

Human pancreas can regenerate too

Although Herrera's group has investigated the versatility of pancreatic cells in mice, several observations in diabetic patients suggest that the human pancreas is capable of transformation too. "The new mechanism shows that the pancreas is much more plastic and – at least during childhood – possesses a much greater potential for self-healing than we had previously assumed," says Herrera.

“There is still a long way to go before diabetes patients might be able to benefit from these findings, but the discovery that delta cells have a high degree of plasticity points to a hitherto unsuspected option for therapeutic intervention.”

(*) S. Chera, D. Baronnier, L. Ghila, V. Cigliola, J. N. Jensen, G. Gu, K. Furuyama, F. Thorel, F. M. Gribble, F. Reimann and P. L. Herrera (2014). Diabetes Recovery By Age-Dependent Conversion of Pancreatic Delta-Cells Into Insulin Producers. Nature online: doi: 10.1038/nature13633
(Journalists can obtain a pdf file from the SNSF by writing to: com@snf.ch)

National Research Programme

"Stem Cells and Regenerative Medicine" (NRP 63)
The aim of NRP 63 is to obtain basic information about the nature, functioning and convertibility of stem cells. NRP 63 also hopes to strengthen stem cell research in Switzerland. It was launched in 2010 and comprises 12 projects. NRP 63 has a budget of CHF 10 million and is scheduled to end next year.


Contact

Prof Pedro L. Herrera
Department of Genetic Medicine and Development
Faculty of Medicine, University of Geneva
Rue Michel-Servet 1
CH-1211 Geneva
Phone: +41 22 379 52 25
E-mail: pedro.herrera@unige.ch

Weitere Informationen:

http://www.snsf.ch/media
http://www.nrp.ch/e

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: Medicine NRP beta diabetic hormone mechanism pancreas pancreatic producing regenerate

More articles from Health and Medicine:

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

nachricht Hypoallergenic parks: Coming soon?
27.08.2015 | American Society of Agronomy

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>