Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asthma drug from the garden center

14.09.2017

The coralberry could offer new hope for asthmatics: researchers at the University of Bonn have extracted a new kind of active pharmaceutical ingredient from its leaves to combat this widespread respiratory disease. In mice, it almost completely inhibits the characteristic contraction of the airways. The plant itself is not exotic: it can be found in any well-stocked garden center. The study is published in the renowned journal Science Translational Medicine.

The coralberry is no outstanding beauty most of the year. This however changes in the winter months: it then forms striking, bright red berries, which make it a popular ornamental plant during this time.


The leaves of the coralberry (Ardisia crenata) contain the natural substance FR900359.

© Photo: Raphael Reher/Daniela Wenzel/Uni Bonn


Prof. Dr. Daniela Wenzel, Alexander Seidinger, Annika Simon and Dr. Michaela Matthey (from left).

(c) Photo: Katharina Wislsperger/Ukom-UKB

Nevertheless, the scientists involved in the study are interested in the plant for another reason: the leaves of the coralberry contain a substance with the cryptic name FR900359. It is assumed that this could be suitable as a medication against certain diseases, despite the fact that Ardisia crenata (its botanical name) has so far been largely disregarded by science.

Researchers at the Institutes of Physiology I, Pharmaceutical Biology and Pharmaceutical Chemistry at the University of Bonn, together with asthma specialists from Nottingham (United Kingdom), have now published a study that could change this.

They found that FR900359 is very effective at preventing the bronchial muscles from contracting. Asthmatics regularly suffer from these pronounced contractions preventing adequate ventilation of the lungs. The resulting shortness of breath can be life-threatening.

More effective than common medicines

The new compound relieves these spasms – and is supposedly more effective and has a more prolonged action than the most common asthma drug salbutamol. “However, we have so far only tested the substance in asthmatic mice,” explains junior professor Dr. Daniela Wenzel. Wenzel is doing research in respiratory diseases at the Institute of Physiology I at the University of Bonn; she was the leader of the study.

The idea to test FR900359 came from the Institute of Pharmaceutical Biology: there, the scientists managed to isolate and characterize the active pharmaceutical substance from the leaves of the coralberry. “This compound inhibits critical signaling molecules in our cells, the Gq proteins,” explains Wenzel. Gq proteins exert key functions in many processes in the body – including control of the airway tone.

Normally, interaction of various signaling pathways induces narrowing of the airways. Inhibition of individual signaling pathways can reduce the contraction of the respiratory tract. However, this does not make it possible to completely prevent such contractions in patients with severe asthma. The various contracting signals converge on Gq proteins and trigger airway spasm. “When we inhibit the activation of Gq proteins with FR900359, we achieve a much greater effect,” emphasizes Dr. Michaela Matthey from the Institute of Physiology I.

This worked exceptionally well in asthmatic mice in the study. “We were able to prevent the animals from reacting to allergens such as house dust mite with a narrowing of the bronchia,” Wenzel is pleased to report. There were hardly any side effects, as the active pharmaceutical ingredient could be applied via inhalation to the respiratory tract and thus only reached the systemic circulation in small quantities.

However, it is not known whether the substance is also suitable for use in people. Although the scientists have already been able to show that human bronchial muscle cells in a petri dish and isolated human airways react in a similarly promising manner, further tests, which could take years, are required prior to its application in people.

Nevertheless, the work is already a great success. This is no coincidence: the German Research Foundation (DFG) funds the research group “G protein signal cascades: creating new pharmaceutical concepts with molecular probes and active pharmaceutical ingredients” at the University of Bonn.

The aim is to pharmaceutically influence central signaling molecules such as the Gq proteins to identify novel substances for the treatment of certain diseases. Physiologists and pharmacists at the University collaborate closely within the research group; the current study is the result of this successful scientific interaction.

Publication: Michaela Matthey, Richard Roberts, Alexander Seidinger, Annika Simon, Ralf Schröder, Markus Kuschak, Suvi Annala, Gabriele M König, Christa E Müller, Ian P Hall, Evi Kostenis, Bernd K Fleischmann, Daniela Wenzel: Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma; Science Translational Medicine; DOI: 10.1126/scitranslmed.aag2288

Contact:

Junior professor Dr. Daniela Wenzel
Institute of Physiology I
Life & Brain Center
Faculty of Medicine
University of Bonn
Tel. +49 (0)228/6885-216
E-mail: dwenzel@uni-bonn.de

Prof. Bernd. K. Fleischmann
Institute of Physiology I
Life & Brain Center
Faculty of Medicine
University of Bonn
Tel. +49 (0)228/6885-200
E-mail: bernd.fleischmann@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: Asthma Biology Physiology airway proteins respiratory tract signaling molecules

More articles from Health and Medicine:

nachricht Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug
14.09.2017 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht How Liver Cancer Develops
12.09.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Asthma drug from the garden center

14.09.2017 | Health and Medicine

New Inhibitor Brings New Hope

14.09.2017 | Life Sciences

Study of transplanted hearts reveals risk gene for cardiovascular disease

14.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>