Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ARTORG and Inselspital develop artificial pancreas

26.11.2015

Artificial pancreas devices so far cannot compensate the daily varying food intake or physical activities of diabetes patients. The University of Bern, the Bern University Hospital and an industry partner have therefore set out to develop a more flexible device to continuously control patients’ blood sugar.

"Today, a diabetic patient must follow a very constraining therapy with many blood glucose measurements, dose calculations and insulin injections. The ideal would be to have a single system that can conduct all of these operations without requiring any intervention", says Prof. Peter Diem, Chairman and Head of the Department of Endocrinology, Diabetes and Clinical Nutrition at Inselspital.

Such a system needs to continuously measure and calculate the level of glucose present in the blood and to constantly deliver insulin via an infusion pump. The amount of infused insulin is determined by an algorithm that estimates the patient needs based on the measured glucose levels, the time of day or the expected activities and that will adapt the pump infusion rate accordingly.

Insulin need depends on daily activity and food profile

"Approaches taken so far do not resolve fundamental difficulties: the patients' variability, uncertainties related to system disturbances, e.g. food intake and physical activity, and errors related to the used devices,” says Dr. Stavroula Mougiakakou, Head of the Diabetes Technology Research Group at the University of Bern’s ARTORG Center.

“The proposed algorithm is easy to use, introduces the concept of real-time personalisation based on reinforcement learning, is able to tackle inter- and intra-patient variability, and can compensate for the effects of uncertain events."

Artificial pancreas has to work accurately and flexibly

The new artificial pancreas ARTORG and Inselspital wish to develop will include an infusion pump produced by an industry partner and an algorithm to run on a wireless PDA device used for the programming of the pump. The accuracy of the different elements in an artificial pancreas is critical.

The insulin levels have to be maintained in a very narrow window. Too little insulin will lead to hyperglycaemia, while too much insulin generates hypoglycaemia. Both situations may induce coma and even patient death. The proposed pump therefore emphasizes on accuracy and flexibility.

The patch pump will be directly placed on the skin, to continuously monitor therapy. It can be detached and reattached at will. A prototype of the pump has been tested by patients in a first clinical trial. After development and integration, the new control algorithm for the personalised delivery of insulin will be verified in a number of clinical trials.

"We are looking forward to seeing this new approach being used by patients and appreciate how much this may facilitate their treatment. It is even more important to improve their quality of life", says Prof. Christoph Stettler, newly elected Director of the Division of Endocrinology, Diabetes and Clinical Nutrition at Inselspital.

Further information:

On diabetes therapy:
Prof. Dr.med. Peter Diem, Chairman and Head, Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital, Bern University Hospital, +41 31 632 4070, peter.diem@insel.ch.

On the algorithm:
PD Dr. Stavroula Mougiakakou, ARTORG Center - Diabetes Technology Research, +41 31 632 75 92, stavroula.mougiakakou@artorg.unibe.ch.

On the infusion pump:
Laurent-Dominique Piveteau, Press Contacts, Debiotech SA, +41 21 623 60 00, ld.piveteau@debiotech.com.

Weitere Informationen:

http://www.insel.ch/en/

Monika Kugemann | Universitätsspital Bern

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>