Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-cell death agent a potential treatment for vision loss associated with MS

09.02.2017

A new therapeutic agent tested in a mouse model of multiple sclerosis (MS) produced anti-inflammatory activity and prevented loss of cells in the optic nerve, according to a new study by researchers in the Perelman School of Medicine at the University of Pennsylvania, with Pittsburgh-based Noveome Biotherapeutics. The research was conducted in the laboratory of Kenneth Shindler, MD, PhD, an associate professor of Ophthalmology and Neurology, and published in Scientific Reports.

The team demonstrated the therapeutic potential of the agent, called ST266, for treating optic neuritis, inflammation that damages the optic nerve and is a common presenting feature of MS. About half of patients diagnosed with MS experience optic neuritis, which can cause mild to moderate permanent loss of vision, but rarely complete blindness. ST266 is a solution of molecules that stimulate paracrine signaling. This is one way in which cells "talk" to each other: One cell produces a chemical signal that induces changes in nearby cells.


This image shows myelin (blue) in the optic nerve of a normal mouse (top), a mouse with optic neuritis (middle), and an optic neuritis mouse treated with ST266 (bottom).

Credit: Ken Shindler, MD, PhD, Perelman School of Medicine, University of Pennsylvania

"In this case, the idea is that the many factors in ST266 not only bind to cell receptors and cause changes within the cells they bind to, but those cells then alter their own secretions and provide additional signals to other neighboring cells, thus propagating an effect from a relatively small amount of protein present in the therapy itself," Shindler said. "To the best of our knowledge, this study demonstrates, for the first time, the ability to treat the optic nerve via the intranasal route of administration."

When ST266 was given to the MS mice via their nose, it reached the central nervous system within 30 minutes and was detected at higher concentrations in parts of the eye and optic nerve compared to other areas of the brain. These findings demonstrated that this type of delivery can target tissues of the eye, which is easier, less painful, and less invasive than injecting medication directly into the eye.

... more about:
»MS »Medicine »optic nerve »vision loss

In mice with optic neuritis, the team showed that early treatment with ST266 prevented damage and dysfunction, marked by significantly reduced loss of optic nerve cells, and suppression of inflammatory cell infiltration into the optic nerve. This in turn was associated with limitation of the degree of demyelination caused by MS- related optic neuritis. However, "it's not known if these effects are independent effects of the therapy or interdependent effects," Shindler said.

Treatment of later-stage optic neuritis in the MS mice showed similar results, resulting in improved visual function compared to untreated groups. The data suggest that ST266 helps promote optic neuron survival by potentially activating multiple pathways, including those that prevent cell death.

"These results are particularly important as the preservation of retinal cells is a significant factor when treating optic neuritis," Shindler said. "There is an increased need for combination treatment options that are able to prevent nerve-cell axon loss for patients with optic neuritis."

Currently, the only acute treatment for MS-related optic neuritis is IV steroids, which only hasten whatever amount of visual recovery will occur even without treatment. Steroids do not prevent nerve damage or permanent vision loss. "ST266's ability to preserve vision in the preclinical model and reduce neuronal loss would be a huge advance if it translates to human patients," Shindler said.

The study also has implications beyond MS-related optic problems. "We also showed an effect on cultured neurons, suggesting that effects may translate to other optic nerve diseases, as well as other brain neurodegenerative diseases," Shindler said.

###

Editor's Note: Dr. Shindler has served as a scientific advisory board member and received consulting fees from Noveome (formerly Stemnion, Inc.). In addition, Noveome has provided unrestricted funds to Penn to support research in Dr. Shindler's laboratory.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: MS Medicine optic nerve vision loss

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>