Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An innovative algorithm is helping scientists decipher how drugs work inside the body

24.07.2015

Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body. The study, published in the journal Cell, could help researchers create drugs that are more efficient and less prone to side effects, suggest ways to regulate a drug's activity, and identify novel therapeutic uses for new and existing compounds.

"For the first time we can perform a genome-wide search to identify the entire set of proteins that play a role in a drug's activity," says study co-author Dr. Andrea Califano, the Clyde and Helen Wu Professor of Chemical Systems Biology and chair of the department of Systems Biology at CUMC.


By analyzing drug-induced changes in disease-specific patterns of gene expression, a new algorithm called DeMAND identifies the genes involved in implementing a drug's effects. The method could help predict undesirable off-target interactions, suggest ways of regulating a drug's activity, and identify novel therapeutic uses for FDA-approved drugs, three critical challenges in drug development. GIF version here: http://newsroom.cumc.columbia.edu/?p=34484

Credit: Califano lab/Columbia University Medical Center

Scientists design drugs to pinpoint molecular targets in the cell. However, when a drug enters the human body, it becomes part of an incredibly complex system, and can interact with other molecules in ways that are hard to predict. This unanticipated cross-talk causes side effects and stops many promising drug candidates from being used in clinical care. Unfortunately, current experimental methods don't allow scientists to identify the full repertoire of proteins that are affected by a drug.

Members of Dr. Califano's lab have devised a new approach called DeMAND.

... more about:
»Biology »CUMC »drugs »proteins

(Detecting Mechanism of Action by Network Dysregulation) to characterize a drug's effects more precisely. The method involves creating a computational model of the network of protein interactions that occur in a diseased cell. Experiments are then performed to track gene expression changes in diseased cells as they are exposed to a drug of interest. The DeMAND algorithm combines data from the model with data from the experiments to identify the complement of proteins most affected by the drug.

DeMAND improves on more labor intensive and less efficient methods, which are only capable of identifying targets to which a compound binds most strongly. This provides a more comprehensive picture, because DeMAND identifies many molecules that are affected in addition to the drug's direct target.

So far, DeMAND's predictions are proving to be accurate when tested with follow-up experiments. The researchers report that when they exposed human diffuse B-cell lymphoma cells to a panel of drugs, the algorithm identified 70% of previously documented targets. "The accuracy of the method has been the most surprising result," says Dr. Califano.

The algorithm makes it possible to identify a variety of compounds that cause similar pharmacological outcomes. Using DeMAND, the researchers showed that a similar subset of proteins is affected by the unrelated drugs sulfasalazine and altretamine. Altretamine is currently used to treat ovarian cancer, but these results suggest that, like sulfasalazine, it could be used for bowel inflammation or rheumatoid arthritis too.

Co-senior author Mukesh Bansal sees great potential in this approach, saying, "DeMAND could accelerate the drug discovery process and reduce the cost of drug development by unraveling how new compounds work in the body. Our findings on altretamine also show that it can determine novel therapeutic applications for existing FDA-approved drugs."

###

The Cell paper is titled, "Elucidating Compound Mechanism of Action by Network Perturbation Analysis." The list of authors is: Andrea Califano, Jung Hoon Woo, Yishai Shimoni, Wan Seok Yang, Prem Subramaniam, Archana Iyer, Paola Nicoletti, María Rodríguez Martínez, Gonzalo López, Ronald Realubit, Charles Karan, Brent R. Stockwell, Mukesh Bansal (all at CUMC), and Michela Mattioli, (Fondazione Istituto Italiano di Tecnologia).

This work was supported by grants from the National Institutes of Health (5U01CA168426, 1U01CA164184-02, 3U01HL111566-02, 5U54CA121852-08, 5R01CA097061, R01CA161061), New York Stem Cell Science (C026715) and the Howard Hughes Medical Institute.

The authors declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast.

For more information, visit cumc.columbia.edu or columbiadoctors.org.

Lucky Tran | EurekAlert!

Further reports about: Biology CUMC drugs proteins

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>