Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amyloid formation may link Alzheimer disease and type 2 diabetes

17.02.2015

Islet amyloid peptide found in human brain senile plaques with beta-amyloid, according to study published in The American Journal of Pathology

The pathological process amyloidosis, in which misfolded proteins (amyloids) form insoluble fibril deposits, occurs in many diseases, including Alzheimer disease (AD) and type 2 diabetes mellitus (T2D).

However, little is known about whether different forms of amyloid proteins interact or how amyloid formation begins in vivo. A study published in The American Journal of Pathology has found evidence that amyloid from the brain can stimulate the growth of fibrils in the murine pancreas and pancreatic-related amyloid can be found along with brain-related amyloid in human brain senile plaques.

Islet amyloid can be found in islets of Langerhans in almost all patients with T2D. Islet amyloid is made up of islet amyloid polypeptide (IAPP), which is derived from its precursor proIAPP. Accumulation of IAPP can lead to beta-cell death. In the brain, deposits of beta-amyloid in the cortex and blood vessels are characteristic findings in AD.

Several clinical studies have shown that patients with T2D have almost a two-fold greater risk of developing AD. The data described in the current study suggest that one link between the two diseases may be the processes underlying amyloidosis.

This investigation focused on understanding how amyloid deposits "seed" or spread within a tissue or from one organ to another. "Several soluble proteins are amyloid forming in humans. Independent of protein origin, the fibrils produced are morphologically similar," said Gunilla T. Westermark, PhD, Department of Medical Cell Biology at Uppsala University (Sweden).

"There is a potential for structures with amyloid-seeding ability to induce both homologous and heterologous fibril growth. Heterologous seeding between IAPP and beta-amyloid may represent a molecular link between AD and T2D." [Homologous fibril growth refers to the growth of fibrils from the same protein. Heterologous fibril growth is when fibrils from one amyloid-forming protein stimulate the growth of fibrils from a different amyloid protein.]

Researchers first injected transgenic mice expressing human IAPP with preformed fibrils of synthetic IAPP, proIAPP, or beta-amyloid. After 10 months on a high-fat diet, tissue was analyzed using an amyloid-specific dye. The number of islets with amyloid was significantly increased compared to controls by all three types of fibrils, and the amyloid consisted of IAPP in all groups. No amyloid deposits were found in the spleen, kidney, liver, heart, or lungs. The results demonstrate for the first time that fibril injections could seed amyloid formation in the pancreas and also that brain amyloid could cross-seed fibril formation in the pancreas.

In subsequent experiments the investigators analyzed human tissues from the pancreas and brain. Using antibody-based methods, they found that pancreas sections with islet amyloid from patients diagnosed with T2D showed no beta-amyloid immunoreactivity, whereas all samples were immunoreactive for IAPP.

To further investigate whether IAPP and beta-amyloid co-localize in human brain tissue researchers analyzed samples from the temporal cortex from AD patients and age-matched non-AD patients with frontotemporal dementia, progressive supranuclear palsy (PSP), or no neurological diagnosis. They found IAPP reactivity in all samples analyzed. In fact, AD samples contained 1.4-times higher IAPP concentrations than samples from non-AD patients.

"It is not clear if IAPP found in brain is locally produced or derived from pancreatic beta-cells," commented Dr. Westermark. "Cross-seeding by other amyloid aggregates or perhaps by other types of aggregates offers one possible mechanism for initiation of amyloid formation. Interactions between amyloid and other aggregation-prone proteins may be of great importance in the development of protein-misfolding diseases."

Eileen Leahy | EurekAlert!

Further reports about: ALZHEIMER Alzheimer disease Amyloid Elsevier T2D fibril fibrils pancreas proteins type 2 diabetes

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>