Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative DNA repair mechanism could provide better treatment for neuroblastoma in kids

22.01.2015

Targeting DNA repair pathways could provide new treatment options for children with high-risk cancer

Researchers at the University of Michigan's C.S. Mott Children's Hospital have identified a promising new target for developing new therapies for kids with high-risk neuroblastoma, according to a new study published in Molecular Cancer Research.

The research, led by Erika Newman, M.D. of C.S. Mott Children's Hospital, found for the first time that components of an alternative DNA repair pathway are highly expressed in neuroblastoma tumors.

"We discovered that high-risk neuroblastoma cells preferentially use an efficient but erroneous DNA repair pathway that gives these cells survival advantage. Importantly, children with neuroblastoma tumors harboring these alternative repair factors have worse overall survival than children with tumors that have low expression," says Newman, who is assistant professor of pediatric surgery at the University of Michigan Medical School and surgical director of the Mott Solid Tumor Oncology Program (MSTOP).

Newman says this information could provide a promising treatment option for neuroblastoma patients, by developing new therapies that disrupt the ability of cancer cells to repair DNA damage.

"There is an urgent need to develop new therapies for children with high-risk neuroblastoma," Newman says.

"Nearly half of patients present with tumors that have already spread. Despite current treatment, most with high-risk neuroblastoma don't survive. The primary focus of our lab is to develop new treatment approaches for children with high-risk disease."

Neuroblastoma is the most common cancer infants and the most common solid tumor outside of the brain in all children, in which malignant cancer cells form in primitive nerve tissue called "ganglions" or in the adrenal glands.

"We are very excited that these findings have provided insight into the mechanism by which neuroblastoma tumors overcome DNA damage. This study provides evidence that an alternative repair mechanism is functional in neuroblastoma and offers experimental support for further preclinical investigation of DNA repair pathways as new therapeutic targets in high-risk neuroblastoma," says Newman.

###

Journal citation: doi: 10.1158/1541-7786.MCR-14-0337

Additional authors: All of the University of Michigan: Fujia Lu, Daniela Bashilari, Li Wang, Anthony W. Opipari and Valerie Castle.

Funding: Supported in part by funds from the Robert Wood Johnson Foundation/Amos Medical Faculty Development Program, The Alfred Taubman Medical Research Institute/Edith Briskin Emerging Scholar Program and the Section of Pediatric Surgery,

The University of Michigan

Disclosures: None

About C.S. Mott Children's Hospital in the University of Michigan Health System:

Since 1903, the University of Michigan has led the way in providing comprehensive, specialized health care for children. From leading-edge heart surgery that's performed in the womb to complete emergency care that's there when you need it, families from all over come to the University of Michigan C.S. Mott Children's Hospital for our pediatric expertise. In 2013, C.S. Mott Children's Hospital was ranked eighth in the nation in Parents Magazine's 10 Best Children's Hospitals ranking.

Media Contact

Mary Masson
mfmasson@umich.edu
734-764-2220

 @UMHealthSystem

http://www.med.umich.edu 

Mary Masson | EurekAlert!

Further reports about: DNA DNA damage DNA repair cancer cells damage neuroblastoma neuroblastoma tumors repair tumors

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>