Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergic asthma: UFZ researchers identify a key molecule

12.10.2015

Allergies are becoming more commonplace, particularly in industrialised coun-tries. In addition to hay fever, allergic asthma is currently considered to be one of the most widespread allergies. UFZ researchers and their colleagues from the University of Leipzig have recently been successful in finding a protein that plays a critical role in the development of allergic airway inflammation. The discovery could pave the way for new therapies, as it also influences the pro-gression of the allergy.

Worldwide, there are more than 300 million asthma patients. In Germany alone, 10 - 15 percent of children suffer from allergic asthma that is often impaired by environmental pollutants. With the medications available today, symptoms can be effectively relieved, but without tackling the root cause. The precise reasons as to why certain people suffer from allergic asthma are still not fully clear.


It is still not fully clear as to why so many people today suffer from allergic asthma. Researchers from the UFZ and the University of Leipzig have now been successful in discovering a molecule that plays a significant role in the development of allergic asthma.

Photo: Alexander Raths, fotolia

Tobias Polte and his team from the Department of Environmental Immunology at the Helmholtz Centre for Environmental Research (UFZ) collaborated with Jan Simon and his colleagues from the Clinic for Dermatology, Venereology and Allergology at the University of Leipzig and have recently been successful in discovering a molecule that plays a significant role in the development of allergic airway inflammation - as demonstrated in their recent publication in Nature Communications.

The protein syndecan-4 is found in the cell membrane of antigen presenting cells (APCs). These are immune cells that detect exogenous substances (antigens). They internalize them and migrate to the nearest lymph node, where they present them to other immune cells, namely T-cells.

In this way they initiate an immune reaction that leads to sensitization to a particular antigen, like for example to a pollen allergen. It is upon renewed contact with this pollen allergen that the typical symptoms of allergic asthma arise.

"In our study we were able to demonstrate that syndecan-4 plays a critical role in APC migration", says Polte. "When syndecan-4 is lacking, the APCs cannot find their way to the T-cells and consequently cannot activate them. As a result, the immune reaction cannot take place and the sensitization to a particular antigen ceases."

Through investigations at the University of Leipzig, the researchers were also able to show that syndecan-4 in the APCs also plays a central role in the inflammatory process of allergic asthma: the allergic asthma symptoms of mice improved when they were given antibodies against syndecan-4. "In principle, syndecan-4 would be a good starting point for new therapies", says Polte.

"Since it exhibits various other functions in cell metabolism, potential side effects are still difficult to assess." To relieve the symptoms of patients with allergic asthma, the treatment of allergic airway inflammation with glucocorticoids and the use of a bronchodilator asthma spray will continue to be paramount in the near future.

"There will only be an effective therapy that gets to the root cause when we have fully understood the relationships behind the development of allergic asthma", says Polte. "Nevertheless, in our study we were able to discover an important component with syndecan-4 that should help us on the road to identifying new therapies."

Publication:
Polte T, Petzold S, Bertrand J, Schütze N, Hinz D, Simon JC, Lehmann I, Echtermeyer F, Pap T, Averbeck M. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation Nature Communications 2015 Jul 13;6:7554. http://dx.doi.org/10.1038/ncomms8554
The study was funded by the Helmholtz Community and the Leipzig Research Centre for Civilization Diseases (LIFE).


Contact
Dr. Tobias Polte
Head of the Young Investigators Group LIPAD in the Department of Environmental Immunology Helmholtz Centre for Environmental Research – (UFZ)
phone: +49 341 235 1545
http://www.ufz.de/index.php?de=17308

Prof. Dr. Jan Simon
University Hospital Leipzig (Institution under Public Law) Clinic for Dermatology, Venereology and Allergology
phone: +49 341 97 18603


Contact Media
Susanne Hufe
UFZ press office
Tel. +49 - 341 - 235-1630
www.ufz.de/index.php?en=640


Address
Helmholtz Centre for Environmental Research - UFZ
Permoserstraße 15
04318 Leipzig
Germany
www.ufz.de


In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. www.ufz.de


The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 37,000 employees in 18 research centres and an annual budget of around €4 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). www.helmholtz.de

UFZ Pressestelle | Helmholtz Centre for Environmental Research (UFZ),

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>