Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergic asthma: UFZ researchers identify a key molecule

12.10.2015

Allergies are becoming more commonplace, particularly in industrialised coun-tries. In addition to hay fever, allergic asthma is currently considered to be one of the most widespread allergies. UFZ researchers and their colleagues from the University of Leipzig have recently been successful in finding a protein that plays a critical role in the development of allergic airway inflammation. The discovery could pave the way for new therapies, as it also influences the pro-gression of the allergy.

Worldwide, there are more than 300 million asthma patients. In Germany alone, 10 - 15 percent of children suffer from allergic asthma that is often impaired by environmental pollutants. With the medications available today, symptoms can be effectively relieved, but without tackling the root cause. The precise reasons as to why certain people suffer from allergic asthma are still not fully clear.


It is still not fully clear as to why so many people today suffer from allergic asthma. Researchers from the UFZ and the University of Leipzig have now been successful in discovering a molecule that plays a significant role in the development of allergic asthma.

Photo: Alexander Raths, fotolia

Tobias Polte and his team from the Department of Environmental Immunology at the Helmholtz Centre for Environmental Research (UFZ) collaborated with Jan Simon and his colleagues from the Clinic for Dermatology, Venereology and Allergology at the University of Leipzig and have recently been successful in discovering a molecule that plays a significant role in the development of allergic airway inflammation - as demonstrated in their recent publication in Nature Communications.

The protein syndecan-4 is found in the cell membrane of antigen presenting cells (APCs). These are immune cells that detect exogenous substances (antigens). They internalize them and migrate to the nearest lymph node, where they present them to other immune cells, namely T-cells.

In this way they initiate an immune reaction that leads to sensitization to a particular antigen, like for example to a pollen allergen. It is upon renewed contact with this pollen allergen that the typical symptoms of allergic asthma arise.

"In our study we were able to demonstrate that syndecan-4 plays a critical role in APC migration", says Polte. "When syndecan-4 is lacking, the APCs cannot find their way to the T-cells and consequently cannot activate them. As a result, the immune reaction cannot take place and the sensitization to a particular antigen ceases."

Through investigations at the University of Leipzig, the researchers were also able to show that syndecan-4 in the APCs also plays a central role in the inflammatory process of allergic asthma: the allergic asthma symptoms of mice improved when they were given antibodies against syndecan-4. "In principle, syndecan-4 would be a good starting point for new therapies", says Polte.

"Since it exhibits various other functions in cell metabolism, potential side effects are still difficult to assess." To relieve the symptoms of patients with allergic asthma, the treatment of allergic airway inflammation with glucocorticoids and the use of a bronchodilator asthma spray will continue to be paramount in the near future.

"There will only be an effective therapy that gets to the root cause when we have fully understood the relationships behind the development of allergic asthma", says Polte. "Nevertheless, in our study we were able to discover an important component with syndecan-4 that should help us on the road to identifying new therapies."

Publication:
Polte T, Petzold S, Bertrand J, Schütze N, Hinz D, Simon JC, Lehmann I, Echtermeyer F, Pap T, Averbeck M. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation Nature Communications 2015 Jul 13;6:7554. http://dx.doi.org/10.1038/ncomms8554
The study was funded by the Helmholtz Community and the Leipzig Research Centre for Civilization Diseases (LIFE).


Contact
Dr. Tobias Polte
Head of the Young Investigators Group LIPAD in the Department of Environmental Immunology Helmholtz Centre for Environmental Research – (UFZ)
phone: +49 341 235 1545
http://www.ufz.de/index.php?de=17308

Prof. Dr. Jan Simon
University Hospital Leipzig (Institution under Public Law) Clinic for Dermatology, Venereology and Allergology
phone: +49 341 97 18603


Contact Media
Susanne Hufe
UFZ press office
Tel. +49 - 341 - 235-1630
www.ufz.de/index.php?en=640


Address
Helmholtz Centre for Environmental Research - UFZ
Permoserstraße 15
04318 Leipzig
Germany
www.ufz.de


In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. www.ufz.de


The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 37,000 employees in 18 research centres and an annual budget of around €4 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). www.helmholtz.de

UFZ Pressestelle | Helmholtz Centre for Environmental Research (UFZ),

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>