Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Accurate eye operations using lasers and optical coherence tomograph


Several laser-based operations are already established for correcting defective vision. However, this highly precise and yet gentle method cannot be used yet for presbyopia and for adhesions on the retina. In the project IKARUS the Laser Zentrum Hannover e.V. (LZH) and four project partners have combined femtosecond laser technology with optical coherence tomography (OCT) as well as adaptive optics, to expand the range of laser surgery.

In the established femtosecond laser-assisted in situ keratomileusis (fs LASIK), the cornea is cut open using the laser to subsequently correct the defective vision. In order to treat presbyopia however, the tissue has to be cut deeper.

3-D OCT projection of an fs laser membrane cut (symbolic laser focus in red). The membrane in blue is only 300 µm from the prepared porcine retina in brown.

Illustration: LZH

The scientists at the LZH and their industrial partners use an fs laser for precisely cutting the lens, creating slip planes and thus making the lens more flexible.

Cutting the eye lens with the laser, without damage

This treatment becomes only possible through an effective visualization of the eye tissue. For this, the Image Guided Laser Surgery Group of the Biomedical Optics Department of the LZH has adapted an OCT imaging unit from the ROWIAK GmbH.

With this and a special software it is possible to image the cutting of the eye as well as the laser beam delivery during the operation. Within the project cuts into the eye have already been done without damaging neither the front nor the rear part of the lens capsule. In current clinical studies, the ROWIAK GmbH is further examining this process.

Removing retina adhesions, without opening the eye

In order to remove retina adhesions, currently the eye must be opened and the vitreous body removed. The scientists at the LZH have integrated adaptive optics into an fs laser system, to be able to cut close to the retina.

First results have already been established on the retina of pig eyes: with this system, model membranes only a few hundred micrometers away from the retina have been cut; the retina tissue directly behind it showed no noticeable damage.

In the project “Innovative cataract, presbyopia and retinal treatment using ultrashort laser pulses” (IKARUS), the following partners apart from the LZH and the ROWIAK GmbH (Hannover) as the system manufacturer have been involved: QIOPTIQ Photonics GmbH & Co. KG (Göttingen) as optics designers, ARGES GmbH (Wackersdorf) for laser scanner systems, and the Laserforum Köln e.V. (Cologne) for clinical consulting and for measuring of the eyes. IKARUS was supported by the German Federal Ministry of Education and Research (BMBF) within the research alliance “Ultrakurzpulslaser”.

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>