Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tool to better screen and treat aneurysm patients

30.05.2014

New research by an international consortium, including a researcher from Lawrence Livermore National Laboratory, may help physicians better understand the chronological development of a brain aneurysm.

Using radiocarbon dating to date samples of ruptured and unruptured cerebral aneurysm (CA) tissue, the team, led by neurosurgeon Nima Etminan, found that the main structural constituent and protein -- collagen type I -- in cerebral aneurysms is distinctly younger than once thought.


A cerebral aneurysm is a blood-filled bulge formed in response to a weakness in the wall at branching brain arteries. If the bulge bursts (shown left), the person can undergo a brain hemorrhage, which is a subtype of stroke and a life-threatening condition. An international team including a researcher from Lawrence Livermore found that the main structural constituent and protein in cerebral aneurysms is distinctly younger than once thought. The new research helps identify patients more likely to suffer from an aneurysm and embark on a path toward prevention.

The new research helps identify patients more likely to suffer from an aneurysm and embark on a path toward prevention.

Simplified, a CA is a blood-filled bulge formed in response to a weakness in the wall at branching brain arteries. If the bulge bursts, the person can undergo a brain hemorrhage, which is a subtype of stroke and a life-threatening condition.

For decades, doctors have assumed that CAs rarely undergo structural change, and earlier theories speculated that CAs grow at a constant rate. The new findings, which appear in the June print issue of the journal Stroke, challenge the concept that CAs are present for decades and that they undergo only sporadic episodes of structural change. In view of these findings, it seems more likely that they alternate between periods of stability and instability during which they are prone to rupture.

For patients with CAs, who are more likely to undergo an aneurysm rupture due to risk factors such as smoking or hypertension, the international team including LLNL's Bruce Buchholz found that the age of collagen type I was significantly younger than those samples taken from people with no risk factors.

The ample amount of relatively young collagen type I in CAs suggests that collagen is changing all the time in aneurysms, which is significantly more rapid in patients with risk factors, Buchholz said.

Radiocarbon bomb-pulse dating uses an isotopic signature created by above-ground nuclear testing between 1955 and 1963, which nearly doubled the amount of carbon-14 in the atmosphere.

When the above-ground test-ban treaty took effect in 1963, atmospheric levels of radiocarbon began to decline as carbon-14 migrated into the oceans and biosphere. Living organisms naturally incorporate carbon into their tissues as the element moves through the food chain. As a result, the concentration of carbon-14 leaves a permanent time stamp on every biological molecule.

"This research may help doctors to formulate better screening and identification of those people at increased risk of an aneurysm rupture," Buchholz said.

The prevalence of unruptured CAs in the general population is 2 percent to 3 percent. The rate of death when they rupture is more than 35 percent. The high rate of death has led the medical community to try to understand the formation and natural history of these lesions to define standards for screening, treatment and identification of those CAs that are likely to rupture.

Other institutions include: Department of Neurosurgery and Institute of Forensic Medicine Heinrich-Heine University Institute for Physiological Chemistry and Pathobiochemistry, Westfalian Wilhelms-University; Department of Neurology, Mayo Clinic; Department of Epidemiology, University of Iowa; Division of Neurosurgery, St. Michael's Hospital;  Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital; and the Department of Surgery,University of Toronto.

Anne Stark | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-06.html#.U4iPLWGKDcs

Further reports about: Biomedical Department Epidemiology Neurosurgery atmosphere biosphere carbon-14 cerebral protein

More articles from Health and Medicine:

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

nachricht Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
02.02.2016 | eLife

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>