Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A recipe for long-lasting livers

22.04.2015

People waiting for organ transplants may soon have higher hopes of getting the help that they need in time. Researchers at the RIKEN Center for Developmental Biology have developed a new technique that extends the time that donor organs last and can also resuscitate organs obtained after cardiac arrest.

The work published in Scientific Reports details a procedure that cools organs down to 22 °C (71.6 °F) and slows down organ function while still supplying oxygen, resulting in more successful transplants than the current standard methods. Team leader Takashi Tsuji notes that this system should quickly increase the pool of available donor organs and could even be used to grow whole 3D organs in the future.


(Left) A natural liver. (Middle) A liver preserved using the new perfusion system at 22 degrees Celsius. (Right) A liver preserved using the standard static method at 4 degrees Celsius. Note how much similar in appearance the liver preserved using the new method is to a natural liver. Transplants with these livers proved much more effective than those using livers in the standard method.

Credit: RIKEN

Typically, donor organs are kept at a static temperature of 4 °C in preservation solution and have preservation times of only about 6 hours for hearts and lungs, 12 hours for livers, and 20 hours for kidneys. Lengthening these times is a high-priority goal in transplant research, and the team at RIKEN was able to do so using a 3D organ-perfusion system that supplies oxygen to the donor organ and keeps it at an ideal temperature.

Using a rat model for liver transplant, they isolated livers, placed them in culture, and hooked them up to a perfusion system that can pump essential fluids through the organs--including red blood cells, which carry much-needed oxygen.

They assessed liver function at several different temperatures by measuring concentrations of certain protein markers--alanine aminotransferase, which rises in dysfunctional livers, and albumin, which is higher in healthy livers. Analysis of these markers and bile production--another sign of a healthy liver--showed that livers remained healthy the longest--up to 2 days--when preserved at 22 °C with red blood cells added to the perfusion culture.

3D-image analysis showed that when red blood cells were used, fewer liver cells died, and the complex structure of the livers remained intact.

After determining that liver cells cooled to 22 °C--but not lower--will begin to multiply again and exhibit healthy metabolism when warmed, the researchers compared the effectiveness of transplanting livers preserved for 24 hours by their new method with those preserved for 24 hours at the standard static 4 °C. Seven days after the transplant, they cut out most of the recipient's natural liver, and through this manipulation, could be sure that they were only analyzing the function of the transplanted liver.

While only 20% of rats that received statically preserved livers survived after this partial hepatectomy, 100% survived after receiving livers preserved using the new hypothermic perfusion system that included red blood cells. Careful analysis showed that seven days after the partial hepatectomy, the new livers, which had been smaller than normal when transplanted, had grown to acceptable weights, and markers of liver function had returned to normal levels.

The team also tested their system on livers similar to those donated after a person has died from cardiac arrest, which in practice often go unused because they are frequently severely damaged. When red blood cells were added, these livers showed many signs of normal function after transplant, and survival rate was 100% even after partial liver removal seven days after transplant.

In stark contrast, when these types of livers were transplanted using static 4 °C preservation or the new perfusion system without red blood cells, none of the rats survived after the partial hepatectomy.

While there is still a ways to go until this method will be available for humans, Tsuji is optimistic. "Optimizing the scale of the system for humans while still making it portable," he says, "will likely take about 3 years. Once that is accomplished, we should be able to begin the first human trials within a year or two."

###

Reference: Ishikawa J, Oshima M, Iwasaki F, Suzuki R, Park J, Nakao K, Matsuzawa-Adachi Y, Mizutsuki T, Kobayashi A, Abe Y, Kobayashi E, Tezuka K, Tsuji T (2015). Hypothermic temperature effects on organ survival and restoration. Scientific Reports. doi: 10.1038/srep09563

Adam Phillips | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>