Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new tool for identifying onset of local influenza outbreaks

20.11.2014

Just in time for flu season, biostatisticians have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level

Predicting the beginning of influenza outbreaks is notoriously difficult, and can affect prevention and control efforts. Now, just in time for flu season, biostatistician Nicholas Reich of the University of Massachusetts Amherst and colleagues at Johns Hopkins have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level.


Reich and colleagues say their new algorithm will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

Credit: UMass Amherst

Hospital epidemiologists and others responsible for public health decisions do not declare the start of flu season lightly, Reich explains. In hospitals, a declaration that flu season has started comes with many extra precautions and procedures such as added gloves, masks and gowns, donning and doffing time, special decontamination procedures, increased surveillance and reduced visitor access, for example.

"There's also healthcare worker fatigue to consider," he adds, "it's a lot to ask of healthcare workers to continue these important preventative measures when they just aren't seeing a lot of flu around their workplace."

"All the extra precautions cost time and money, so you don't want to declare flu season too early. For hospitals, there is a strong incentive to define a really clear period as flu season. It does not start the moment you see the first case in the fall. If you begin the full response too early, you set yourself up for a long slog and too much effort will be spent on too few cases. You want to be as effective and efficient as possible in your preparations and response."

Details of the new open-source, publicly available tool designed by Reich, of the School of Public Health and Health Sciences at UMass Amherst, with Dr. Trish Perl of the Johns Hopkins University School of Medicine and others in Colorado, Florida and New York, appear in the current issue of Clinical Infectious Diseases.

The authors say their algorithm, or statistical technique, which they call Above Local Elevated Respiratory Illness Threshold (ALERT), will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

ALERT should not require doctors, nurses, hospitals, clinics or public health departments to collect any new data, but instead uses routinely collected information such as weekly counts of laboratory-confirmed influenza A cases.

To develop the new metric, Reich and colleagues used years of surveillance data of confirmed flu cases at two large hospitals in Baltimore and Denver. They obtained weekly counts of confirmed influenza A cases at the 200-bed Children's Hospital at Johns Hopkins and the 414-bed Children's Hospital of Colorado from 2001 through 2013.

They used 2001 through 2011 data to create the algorithm, then tested its performance in the 2011-12 and 2012-13 seasons in the two locations. At Johns Hopkins, 71 and 91 percent respectively of all reported cases fell in the ALERT period, while at Colorado Children's the ALERT period captured 77 and 89 percent of all cases, the authors report. Results suggest "that the ALERT algorithm performs well at predicting the beginning and end of a seasonal period of increased influenza incidence," they add.

To use the algorithm, hospital epidemiologists upload as many years of their own institution's historical flu data as possible to the web-based ALERT applet and then "tune the dials" that control the algorithm to customize the results for their purposes, Reich says. "The more years of data you have, the better," he notes. "We have applied it in places with only three to five years of data and it's still been a useful tool, but the more years you have the more accurate it will be."

The ALERT algorithm helps users pick a threshold number of new cases per week that will signal the start of the season. But as the authors point out, choosing the right threshold poses a challenge. "To guide the user to an evidence-based decision, the ALERT algorithm summarizes data from previous years as if each of several thresholds had been applied." For each threshold, it calculates and reports a set of summary metrics, from which the user can select one that meets their local needs.

Based on local historical data inputs, the tool defines a time window or "ALERT period" when elevated incidence is estimated to occur.

Reich explains, "People will look at the output from ALERT and do a cost-benefit analysis. We don't try to do this for them, but the algorithm can help you to estimate the threshold at which you should start to think about declaring that flu season has started. And, very importantly, your staff can have a sense that it will not go on forever, but that for the next 11 or 12 weeks, for example, you'll be taking the extra precautions."

This work was supported by the U.S. Department of Veterans Affairs and the Centers for Disease Control and Prevention.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu/

Further reports about: Amherst Colorado accurate algorithm flu flu season influenza outbreaks public health

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>