Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new tool for identifying onset of local influenza outbreaks

20.11.2014

Just in time for flu season, biostatisticians have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level

Predicting the beginning of influenza outbreaks is notoriously difficult, and can affect prevention and control efforts. Now, just in time for flu season, biostatistician Nicholas Reich of the University of Massachusetts Amherst and colleagues at Johns Hopkins have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level.


Reich and colleagues say their new algorithm will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

Credit: UMass Amherst

Hospital epidemiologists and others responsible for public health decisions do not declare the start of flu season lightly, Reich explains. In hospitals, a declaration that flu season has started comes with many extra precautions and procedures such as added gloves, masks and gowns, donning and doffing time, special decontamination procedures, increased surveillance and reduced visitor access, for example.

"There's also healthcare worker fatigue to consider," he adds, "it's a lot to ask of healthcare workers to continue these important preventative measures when they just aren't seeing a lot of flu around their workplace."

"All the extra precautions cost time and money, so you don't want to declare flu season too early. For hospitals, there is a strong incentive to define a really clear period as flu season. It does not start the moment you see the first case in the fall. If you begin the full response too early, you set yourself up for a long slog and too much effort will be spent on too few cases. You want to be as effective and efficient as possible in your preparations and response."

Details of the new open-source, publicly available tool designed by Reich, of the School of Public Health and Health Sciences at UMass Amherst, with Dr. Trish Perl of the Johns Hopkins University School of Medicine and others in Colorado, Florida and New York, appear in the current issue of Clinical Infectious Diseases.

The authors say their algorithm, or statistical technique, which they call Above Local Elevated Respiratory Illness Threshold (ALERT), will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

ALERT should not require doctors, nurses, hospitals, clinics or public health departments to collect any new data, but instead uses routinely collected information such as weekly counts of laboratory-confirmed influenza A cases.

To develop the new metric, Reich and colleagues used years of surveillance data of confirmed flu cases at two large hospitals in Baltimore and Denver. They obtained weekly counts of confirmed influenza A cases at the 200-bed Children's Hospital at Johns Hopkins and the 414-bed Children's Hospital of Colorado from 2001 through 2013.

They used 2001 through 2011 data to create the algorithm, then tested its performance in the 2011-12 and 2012-13 seasons in the two locations. At Johns Hopkins, 71 and 91 percent respectively of all reported cases fell in the ALERT period, while at Colorado Children's the ALERT period captured 77 and 89 percent of all cases, the authors report. Results suggest "that the ALERT algorithm performs well at predicting the beginning and end of a seasonal period of increased influenza incidence," they add.

To use the algorithm, hospital epidemiologists upload as many years of their own institution's historical flu data as possible to the web-based ALERT applet and then "tune the dials" that control the algorithm to customize the results for their purposes, Reich says. "The more years of data you have, the better," he notes. "We have applied it in places with only three to five years of data and it's still been a useful tool, but the more years you have the more accurate it will be."

The ALERT algorithm helps users pick a threshold number of new cases per week that will signal the start of the season. But as the authors point out, choosing the right threshold poses a challenge. "To guide the user to an evidence-based decision, the ALERT algorithm summarizes data from previous years as if each of several thresholds had been applied." For each threshold, it calculates and reports a set of summary metrics, from which the user can select one that meets their local needs.

Based on local historical data inputs, the tool defines a time window or "ALERT period" when elevated incidence is estimated to occur.

Reich explains, "People will look at the output from ALERT and do a cost-benefit analysis. We don't try to do this for them, but the algorithm can help you to estimate the threshold at which you should start to think about declaring that flu season has started. And, very importantly, your staff can have a sense that it will not go on forever, but that for the next 11 or 12 weeks, for example, you'll be taking the extra precautions."

This work was supported by the U.S. Department of Veterans Affairs and the Centers for Disease Control and Prevention.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu/

Further reports about: Amherst Colorado accurate algorithm flu flu season influenza outbreaks public health

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>