Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new tool for identifying onset of local influenza outbreaks

20.11.2014

Just in time for flu season, biostatisticians have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level

Predicting the beginning of influenza outbreaks is notoriously difficult, and can affect prevention and control efforts. Now, just in time for flu season, biostatistician Nicholas Reich of the University of Massachusetts Amherst and colleagues at Johns Hopkins have devised a simple yet accurate method for hospitals and public health departments to determine the onset of elevated influenza activity at the community level.


Reich and colleagues say their new algorithm will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

Credit: UMass Amherst

Hospital epidemiologists and others responsible for public health decisions do not declare the start of flu season lightly, Reich explains. In hospitals, a declaration that flu season has started comes with many extra precautions and procedures such as added gloves, masks and gowns, donning and doffing time, special decontamination procedures, increased surveillance and reduced visitor access, for example.

"There's also healthcare worker fatigue to consider," he adds, "it's a lot to ask of healthcare workers to continue these important preventative measures when they just aren't seeing a lot of flu around their workplace."

"All the extra precautions cost time and money, so you don't want to declare flu season too early. For hospitals, there is a strong incentive to define a really clear period as flu season. It does not start the moment you see the first case in the fall. If you begin the full response too early, you set yourself up for a long slog and too much effort will be spent on too few cases. You want to be as effective and efficient as possible in your preparations and response."

Details of the new open-source, publicly available tool designed by Reich, of the School of Public Health and Health Sciences at UMass Amherst, with Dr. Trish Perl of the Johns Hopkins University School of Medicine and others in Colorado, Florida and New York, appear in the current issue of Clinical Infectious Diseases.

The authors say their algorithm, or statistical technique, which they call Above Local Elevated Respiratory Illness Threshold (ALERT), will help to signal that influenza transmission is rising in a given region and will assist public health officials, researchers, doctors and hospitals with prevention and healthcare delivery.

ALERT should not require doctors, nurses, hospitals, clinics or public health departments to collect any new data, but instead uses routinely collected information such as weekly counts of laboratory-confirmed influenza A cases.

To develop the new metric, Reich and colleagues used years of surveillance data of confirmed flu cases at two large hospitals in Baltimore and Denver. They obtained weekly counts of confirmed influenza A cases at the 200-bed Children's Hospital at Johns Hopkins and the 414-bed Children's Hospital of Colorado from 2001 through 2013.

They used 2001 through 2011 data to create the algorithm, then tested its performance in the 2011-12 and 2012-13 seasons in the two locations. At Johns Hopkins, 71 and 91 percent respectively of all reported cases fell in the ALERT period, while at Colorado Children's the ALERT period captured 77 and 89 percent of all cases, the authors report. Results suggest "that the ALERT algorithm performs well at predicting the beginning and end of a seasonal period of increased influenza incidence," they add.

To use the algorithm, hospital epidemiologists upload as many years of their own institution's historical flu data as possible to the web-based ALERT applet and then "tune the dials" that control the algorithm to customize the results for their purposes, Reich says. "The more years of data you have, the better," he notes. "We have applied it in places with only three to five years of data and it's still been a useful tool, but the more years you have the more accurate it will be."

The ALERT algorithm helps users pick a threshold number of new cases per week that will signal the start of the season. But as the authors point out, choosing the right threshold poses a challenge. "To guide the user to an evidence-based decision, the ALERT algorithm summarizes data from previous years as if each of several thresholds had been applied." For each threshold, it calculates and reports a set of summary metrics, from which the user can select one that meets their local needs.

Based on local historical data inputs, the tool defines a time window or "ALERT period" when elevated incidence is estimated to occur.

Reich explains, "People will look at the output from ALERT and do a cost-benefit analysis. We don't try to do this for them, but the algorithm can help you to estimate the threshold at which you should start to think about declaring that flu season has started. And, very importantly, your staff can have a sense that it will not go on forever, but that for the next 11 or 12 weeks, for example, you'll be taking the extra precautions."

This work was supported by the U.S. Department of Veterans Affairs and the Centers for Disease Control and Prevention.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu/

Further reports about: Amherst Colorado accurate algorithm flu flu season influenza outbreaks public health

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>