Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene increases the severity of common colds

18.07.2017

Researchers funded by the Swiss National Science Foundation (SNSF) have discovered mutations that worsen respiratory infections among children. Their study explain the mechanism involved.

Colds that are not linked to influenza are generally benign. Still, 2% of each generation of children have to go to hospital following a virulent infection. "These respiratory problems are responsible for 20% of child mortality around the world", says Jacques Fellay, who has held an SNSF professorship since 2011. "It is truly a silent epidemic."


Researchers funded by the SNSF have discovered mutations that worsen respiratory infections among children. Their study explain the mechanism involved.

An international research collaboration coordinated by Fellay has discovered the reason for some of these infections: they are caused by mutations of a gene that plays a part in recognising certain cold-inducing viruses. (*)

"We have been able to confirm that a gene, called IFIH1, plays an important role in defending the body against the principal viruses responsible for respiratory infections among children", he explains. This gene normally helps in identifying the virus's RNA, a type of genetic information related to the DNA. "We have been able to isolate the mechanisms that prevent the immune systems of children with an IFIH mutation from successfully combating the viral infection."

Hospitals in Switzerland and Australia

The researchers collaborated with various paediatric wards in Swiss and Australian hospitals to study cases of children who needed intensive care after a severe respiratory infection (bronchiolitis or pneumonia) caused by a virus. They excluded premature babies and children with chronic illnesses in order to focus on the genetic causes. The result: of the 120 children included in the study, eight carried mutations of the IFIH1 gene.

"This gene encodes a protein which recognises the presence of a certain number of cold-inducing microbes in a cell, such as the respiratory syncytial virus (RSV) or rhinoviruses", explains Samira Asgari of EPFL, who designed the experiments. “They attach themselves to the germ's RNA and trigger a cascade of molecular signals that provoke an effective immune reaction." The researcher has been able to show that three different mutations of IFIH1 render the protein incapable of recognising the virus, thereby preventing the body from defending itself against the infection.

In 2015, Jacques Fellay had already studied the genome of more than 2000 patients and statistically shown which genetic variations influence our capacity to defend ourselves against common viral infections.(**) "The two approaches are complementary", says Fellay. "A study covering a large number of subjects, like the one in 2015, makes it possible to identify the relevant genes across the entire population; but their variations have only a limited impact on individuals. In contrast, a study focusing on carefully selected patients enables you to investigate mutations that are more rare but also more critical for the patient, and to pinpoint the mechanisms in play."

Prevention and therapy

These results should prove useful for setting new therapeutic and preventive targets: "At their parents' request, we also tested the siblings of some of the children carrying the mutation to see if they too are more fragile when it comes to infections. If this is the case, parents may decide to keep their child at home during an epidemic, or to go to hospital double-quick if the child catches a cold."

For Jacques Fellay, this research work aptly illustrates the methods and objectives of personalised medicine or 'precision medicine': "Our bodies' capacity to ward off illnesses can vary greatly. A better understanding of the genetic mechanisms that create these differences will lead to more targeted prevention and therapy. One scenario might involve genetic screening to determine the degree of susceptibility to infections; this could be included in the blood tests that are routinely performed just after birth. But society would need to have a say in deciding which genetic tests are desirable."


This research is the result of a collaboration between EPFL, the Swiss Institute of Bioinformatics, the universities of Bern, Geneva, Lausanne and Queensland, the University Hospital of Geneva, the Centre hospitalier universitaire vaudois (CHUV) and the children's hospitals of Lucerne and Brisbane.

(*) S. Asgari et al.: Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. PNAS (2017)
doi: 10.1073/pnas.1704259114

(**) C. Hammer et al.: Amino Acid Variation in HLA Class II Proteins Is a Major Determinant of Humoral Response to Common Viruses. The American Journal of Human Genetics (2015); doi:10.1016/j.ajhg.2015.09.008. See also “Genetic variation is key to fighting viruses”

The publications are available online.

Contact

Jacques Fellay
School of Life Sciences, EPFL
1015 Lausanne
Phone: +41 21 69 31849
E-mail: jacques.fellay@epfl.ch

Trump travel ban affected researchers

This study was carried out by Samira Asgari, who obtained a PhD at EPFL in 2016 after completing her studies in biotechnology at the University of Teheran. In January 2017, she was denied entry to the United States, where she was expected to take up a position at Harvard Medical School. The refusal of entry occurred following the travel ban issued by the Trump administration and made headlines both in Switzerland and the US. It prompted the SNSF to offer help to all researchers affected by the ban. Samira Asgari has since been able to join Soumya Raychaudhuri’s lab in Boston, where she works on the genetics of tuberculosis thanks to a postdoc fellowship from the SNSF.

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-170718-press-release-a-...
http://www.pnas.org/content/early/recent
http://actu.epfl.ch/news/genetic-variation-is-key-to-fighting-viruses-4/
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-170131-us-travel-ban-sn... 'News: The SNSF supports researchers affected by travel ban'
http://p3.snf.ch/project-172101 'Samira Asgari’s postdoc fellowship'

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: EPFL IFIH1 RNA SNSF epidemic infections mutations respiratory infections viruses

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>