Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in combating malaria with odor-baited trap for mosquitoes

10.08.2016

Beating malaria without using insecticides is 1 step closer -- by installing solar powered odor-baited traps next to traditional houses in Kenya, mosquito populations declined steeply and malaria was significantly reduced

The use of a newly-developed mosquito trap incorporating human odour has resulted in a 70% decline in the population of the most significant malaria mosquito on the Kenyan island of Rusinga.


The infographic shows how the odor baited traps catches malaria mosquitoes and lower the general mosquito density in the area.

Credit: Wageningen University

After the introduction of the odour-baited traps on the island the proportion of people with malaria was 30% lower among those living in houses with a trap compared to people living in houses who were yet to receive a trap. The study was published today in The Lancet, a leading scientific journal.

Prof. Willem Takken led the three-year study with Wageningen University scientists and researchers from the Kenyan International Centre of Insect Physiology and Ecology (ICIPE) and the Swiss Tropical and Public Health Institute (Swiss TPH).

"The objective of the trial on Rusinga Island in Lake Victoria was to investigate whether malaria mosquitoes can be captured and destroyed using traps with a lure so that the risk of new malaria infections is minimised," explains Willem Takken.

"Ultimately we want to eradicate malaria completely, in an environmentally-friendly and sustainable manner. In the case of extensive use of insecticides to kill the mosquitoes which are the carriers of the disease, the mosquitoes become resistant to the chemicals. That makes combating malaria increasingly tricky and less environmentally-friendly.

Alternative methods are therefore urgently needed. As we use a natural lure - namely human odour - in our approach there is no negative impact on the environment and it is very improbable that the mosquitoes will become 'resistant' to being captured. After all, the mosquitoes need their attraction to the lure in order to be able to survive."

Zika and dengue fever

The odour-baited trap may also offer a solution to diseases like dengue fever and the Zika virus. Aedes aegypti (the yellow fever mosquito), is a vector for these viruses. This mosquito is attracted to the same humanised scent that attracts malaria mosquitoes. Zika and dengue fever could therefore be combated with the odour-baited traps.

Better living conditions

The success of the new approach is the combination of the odour-baited trap with mosquito nets, anti-malaria drugs, and a solid social strategy. The odour-baited traps need electricity to operate, but there is no central electricity supply on Rusinga, an island in Lake Victoria. Solar panels were installed on the roofs of homes. These not only provided electricity for the mosquito traps but also provided the homes with power for light and to charge a mobile phone. The use of solar energy to control malaria gave rise to the project name: SolarMal. Great efforts were also made in relation to education about malaria and actively engaging the inhabitants of Rusinga in the project. Thanks to this combined approach, all 25,000 inhabitants of Rusinga participated in the study. When the odour-baited traps are used, the use of insecticides to combat the mosquito population can be minimised, thus avoiding any harmful side effects of such products. The Wageningen anti-malaria approach therefore has positive effects in reducing the spread of malaria as well as positive effects on the living conditions of the population.

Malaria: a major cause of death and an economic problem

Every minute, a child dies of malaria. This disease costs Africa twelve billion dollars a year in health-care costs and lost productivity, particularly in the agricultural sector. Fighting malaria without using insecticides is vital to world food production. "The effect of the disease on agricultural production is hugely underestimated," says Willem Takken. "As children with malaria need access to hospital care, their parents cannot work on the land and as a result food production rates decline. If those parents themselves also suffer from malaria infections four or five times a year, they are also not able to work for around six weeks. In such cases, extra labour needs to be brought in or the crop will be lost. An African household loses 10% of its annual incomes through malaria. It is for good reason that reducing the prevalence of malaria was included in the ten millennium development goals formulated by the UN."

The World Health Organization (WHO) is aiming to eradicate malaria by 2030. To this end, investments are being made in the development of vaccines against the parasite and in combating the vectors of the parasite: the mosquitoes. The odour-baited trap - named 'the Suna trap' - represents an effective and safe solution in the fight against the mosquito.

Media Contact

Jac Niessen
jac.niessen@wur.nl
31-317-485-003

 @uniwageningen

http://www.wageningenur.nl/uk 

Jac Niessen | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>