Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D printing techniques help surgeons carve new ears

01.10.2015

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework of a new ear. They take only as much of that precious cartilage as they need.


In the study, experienced surgeons preferred carving the UW's models (in white) over a more expensive material made of dental impression material (in blue).

Credit: University of Washington

That leaves medical residents without an authentic material to practice on, as vegetables are a pale substitute. Some use pig or adult cadaver ribs, but children's ribs are a different size and consistency.

Now, a collaboration between a University of Washington otolaryngology resident and bioengineering student has used 3-D printing to create a low-cost pediatric rib cartilage model that more closely resembles the feel of real cartilage and allows for realistic surgical practice. The innovation could open the door for aspiring surgeons to become proficient in the sought-after but challenging procedure.

Their results are described in an abstract presented this week at the American Academy of Otolaryngology -- Head and Neck Surgery conference in Dallas.

"It's a huge advantage over what we're using today," said lead author Angelique Berens, a UW School of Medicine otolaryngology -- head and neck surgery resident. "You literally take a bar of Lever 2000 while the attending is operating and you carve ear cartilage. It does teach you how to get the shape right, but the properties are not super accurate -- you can't bend it, and sewing it is not very lifelike."

As part of the study, three experienced surgeons practiced carving, bending and suturing the UW team's silicone models, which were produced from a 3-D printed mold modeled from a CT scan of an 8-year-old patient. They compared their firmness, feel and suturing quality to real rib cartilage, as well as a more expensive material made out of dental impression material.

All three surgeons preferred the UW models, and all recommended introducing them as a training tool for surgeons and surgeons-in-training.

Kathleen Sie, a UW Medicine professor of otolaryngology -- head and neck surgery and director of the Childhood Communication Center at Seattle Children's, said the lack of adequate training models makes it difficult for people to become comfortable performing the delicate and technical procedure, which is called auricular reconstruction.

There's typically a six- to 12-month waiting list for children to have the procedure done at Seattle Children's, she said.

"It's a surgery that more people could do, but this is often the single biggest roadblock," Sie said. "They're hesitant to start because they've never carved an ear before. As many potatoes and apples as I've carved, it's still not the same."

Another advantage is that because the UW models are printed from a CT scan, they mimic an individual's unique anatomy. That offers the opportunity for even an experienced surgeon to practice a particular or tricky surgery ahead of time on a patient-specific rib model.

Co-author Sharon Newman, who graduated from the UW with a bioengineering degree in June, teamed up with Berens while they both worked in the UW BioRobotics Lab under electrical engineering professor Blake Hannaford.

Newman figured out how to upload and process a CT scan through a series of free, open-source modeling and imaging programs, and ultimately use a 3-D printer to print a negative mold of a patient's ribs.

Newman had previously tested different combinations of silicone, corn starch, mineral oil and glycerin to replicate human tissue that the lab's surgical robot could manipulate. She poured them into the molds and let them cure to see which mixture most closely resembled rib cartilage.

"I would go to the craft store and Home Depot and say I want to make models -- what aisle should I go to?" said Newman. "It turns out a lot of these ideas were based off of materials people use for arts and crafts like rings or other jewelry."

The team's next steps are to get the models into the hands of surgeons and surgeons-in-training, and hopefully to demonstrate that more lifelike practice models can elevate their skills and abilities.

"With one 3-D printed mold, you can make a billion of these models for next to nothing," said Berens. "What this research shows is that we can move forward with one of these models and start using it."

###

Co-authors include Craig Murakami, UW clinical associate professor and Virginia Mason Medical Center otolaryngologist -- head and neck surgeon and facial plastic surgeon, and David A. Zopf, assistant professor of otolaryngology -- head and neck surgery at the University of Michigan.

For more information, contact Berens at berens@uw.edu or 616-291-8206.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-430-2580

 @UW

http://www.washington.edu/news/

Jennifer Langston | EurekAlert!

Further reports about: 3-D CT scan Cartilage electrical engineering human tissue surgical robot

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>