Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report

10.08.2017

A case report, describing how water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation, has been published on 03. August 2017 in the interdisciplinary e-journal "GMS German Medical Science" of the Association of Scientific Medical Societies (AWMF) [1]. Water-filtered infrared-A (wIRA) is a special form of heat radiation with high tissue penetration and a low thermal load to the skin surface, see Figure 1. wIRA corresponds to the major part of the sun’s heat radiation, which reaches the surface of the Earth in moderate climatic zones filtered by water and water vapour of the atmosphere.

A patient with a Barrett oesophageal carcinoma and a resection of the oesophagus with gastric pull-up developed swallowing disorders 6 years and 2 months after the operation. Within 1 year and 7 months two recurrences of the tumor at the anastomosis were found and treated with combined chemoradiotherapy or chemotherapy respectively.


Fig. 1. Comparison of the spectra of the Sun, a radiator with water-filtered infrared-A (wIRA) and of two different halogen radiators without water-filter.

Diagram: Piazena


Fig. 2. Irradiation with water-filtered infrared-A (wIRA) at home.

Photo: Hoffmann

7 years and 9 months after the operation local tumor masses and destruction were present with no ability to orally drink or eat (full feeding by jejunal PEG tube): quality of life was poor, as saliva and mucus were very viscous (pulling filaments) and could not be swallowed and had to be spat out throughout the day and night resulting in short periods of sleep (awaking from the necessity to spit out). In total the situation was interpreted more as a problem related to a feeling of choking (with food or fluid) in the sense of a functional dysphagia rather than as a swallowing disorder from a structural stenosis.

At that time a liquefying substance – acetylcysteine (2 times 200 mg per day, given via the PEG tube) – and irradiation with water-filtered infrared-A (wIRA), a special form of heat radiation, of the ventral part of the neck and the thorax were added to the therapy. Within 1 day with acetylcysteine saliva and mucus became less viscous.

Within 2 days with wIRA (one day with 4 to 5 hours with irradiation with wIRA at home) salivation decreased markedly and quality of life clearly improved: For the first time the patient slept without interruption and without the need for sleep-inducing medication. After 5 days with wIRA the patient could eat his first soft dumpling. After 2½ weeks with wIRA the patient could eat his first minced schnitzel (escalope). The ability to swallow concentrated/incrassated fluids, more in the sense of an eating than a drinking, was regained.

Following the commencement of wIRA (with typically approximately 90–150 minutes irradiation with wIRA per day) the patient had 8 months with good quality of life with only small amounts of liquid saliva and mucus and without the necessity to spit out. During this period the patient was able to sleep during the night.

In the mentioned patient case the decrease of hypersecretion (hypersalivation) and the overcoming of a swallowing disorder (interpreted for most of the time span more as a problem of choking in the sense of a functional dysphagia rather than as a swallowing disorder from a structural stenosis; swallowing as a complex nerve function), possibly interpretable as regeneration of nerve function, were the two most important underlying effects of wIRA concerning improving his quality of life.

The patient clearly benefited from some general features of wIRA: All irradiations of the patient with wIRA were done at home and were contact-free without the use of expendable materials and were felt to be pleasant. A moderate irradiance was always used by choosing enough distance between radiator and uncovered skin (see Figure 2), approximately two times the length of the distance rod (distance rod = minimum irradiation distance). After receiving instructions in proper and safe use of wIRA the patient could easily apply wIRA at home by himself. This allowed long daily irradiation times and use of wIRA even at weekends and avoided the necessity of visiting a physician or a physiotherapist with a wIRA radiator for each treatment, thereby saving both time and money.

The main physiological effects of water-filtered infrared-A (wIRA) are: wIRA increases tissue temperature, tissue oxygen partial pressure and tissue perfusion markedly.

The five main clinical effects of wIRA are: wIRA decreases pain, inflammation and exudation/hypersecretion, and promotes infection defense and regeneration, all in a cross-indication manner. Therefore there is a wide range of indications for wIRA.

The effects of wIRA are based on both its thermal effects (relying on transfer of heat energy) and thermic effects (temperature-dependent effects, occurring together with temperature changes) as well as on non-thermal and temperature-independent effects like direct effects on cells, cell structures or cell substances.

It should be emphasized that in this case report wIRA was used only symptomatically and not as part of a causal therapy, although wIRA can be combined successfully in oncology with radiation therapy or with chemotherapy.

Besides in a variety of other indications for wIRA, in cases of swallowing disorders (functional dysphagia) and hypersalivation or hypersecretion of mucus the use of wIRA should be considered as part of the treatment regime for improving a patient’s quality of life.

Corresponding author:
Prof. Dr. med. Gerd Hoffmann
Institute of Sports Sciences, Johann Wolfgang Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt/Main, Germany, Phone+Q: +49-6181-62287
E-Mail: Hoffmann@em.uni-frankfurt.de

Publication (freely available):
[1] Hoffmann G. Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report. [Wassergefiltertes Infrarot A (wIRA) überwindet Schluckstörungen und vermehrte Speichelbildung – ein Fallbericht; zweisprachiger Volltext] GMS Ger Med Sci. 2017;15:Doc11.
DOI: 10.3205/000252, URN: urn:nbn:de:0183-0002523
http://www.egms.de/de/journals/gms/2017-15/000252.shtml (shtml, German)
http://www.egms.de/en/journals/gms/2017-15/000252.shtml (shtml, English)
http://www.egms.de/pdf/journals/gms/2017-15/000252.pdf (PDF, English and German)

Extensive presentation of a variety of applications of water-filtered infrared-A (wIRA) (besides swallowing disorders) (in German with abbreviated English review) is freely available from:
http://www.waerme-therapie.com/fachartikel.html

Legend concerning Figure 1:
Comparison of the spectra of the Sun, a radiator with water-filtered infrared-A (wIRA) and of two different halogen radiators without water-filter: the three different radiators with their depicted spectral irradiances cause the same skin surface temperature. For certain clinically relevant wavelengths, such as 820 nm, the applicable irradiance can be 6-30fold compared to infrared lamps without water-filter.

Legend concerning Figure 2:
Irradiation with water-filtered infrared-A (wIRA) at home.

Dennis Makoschey | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>