Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning

07.12.2016

Before an operation, surgeons have to obtain the most precise image possible of the anatomical structures of the part of the body undergoing surgery. University of Basel researchers have now developed a technology that uses computed tomography data to generate a three-dimensional image in real time for use in a virtual environment.

The planning of a surgical procedure is an essential part of successful treatment. To determine how best to carry out procedures and where to make an incision, surgeons need to obtain as realistic an image as possible of anatomical structures such as bones, blood vessels, and tissues.


With SpectoVive, doctors can interact in a three-dimensional space with a part of the body that requires surgery.

Screenshot: University of Basel

Researchers from the University and University Hospital of Basel’s Department of Biomedical Engineering have now succeeded in taking two-dimensional cross-sections from computer tomography and converting them for use in a virtual environment without a time lag.

Using sophisticated programming and the latest graphics cards, the team led by Professor Philippe C. Cattin succeeded in speeding up the volume rendering to reach the necessary frame rate. In addition, the SpectoVive system can perform fluid shadow rendering, which is important for creating a realistic impression of depth.

For example, doctors can use the latest generation of virtual reality glasses to interact in a three-dimensional space with a hip bone that requires surgery, zooming in on the bone, viewing it from any desired angle, adjusting the lighting angle, and switching between the 3D view and regular CT images. Professor Cattin explains the overall benefits: “Virtual reality offers the doctor a very intuitive way to obtain a visual overview and understand what is possible.”

“This brand-new technology smoothly blurs the boundary between the physical world and computer simulation. As a doctor, I am no longer restricted to looking at my patient’s images from a bird’s eye view. Instead, I become part of the image and can move around in digital worlds to prepare myself, as a surgeon, for an operation in detail never seen before,” says ophthalmologist Dr. Peter Maloca.

“I have found that these new environments continue to guide me and have helped rewire my senses, ultimately making me a better doctor. Those who stand to gain the most here are doctors, their patients, and students – all of whom can share in this new information,” adds Maloca, who works at University Hospital Basel’s OCTlab and at Moorfields Eye Hospital in London.

Improved volume rendering

The ability to convert CT images into a 3D on-screen representation is nothing new. Until now, however, commonly available hardware could not generate these three-dimensional volumes in real time for use in virtual spaces. One particularly challenging aspect was that smooth playback in a virtual environment requires at least 180 images a second – 90 images each for the left and right eyes; otherwise, the viewer may experience nausea or dizziness.

Widespread interest in innovation

This achievement was aided by developments in the computer games industry and new generations of powerful standard hardware, providing medical practitioners with access to three-dimensional test environments. At present, the Basel-based researchers are conducting regular demonstrations of SpectoVive to physicians in order to highlight the system’s potential and, at the same time, to gain a better understanding of doctors’ requirements.

Some museums have also expressed interest in the technology, seeing SpectoVive as an opportunity to allow visitors to discover the world inside exhibits, such as mummies, in an intuitive and nondestructive manner. However, Philippe Cattin, Professor for Image-Guided Therapy at the Faculty of Medicine, sees the greatest potential in the areas of diagnostics, surgical planning, and medical training.

SpectoVive – part of the MIRACLE project

This innovation is part of the MIRACLE project underway at the Department of Biomedical Engineering. The project is receiving CHF 15.2 million in funding from the Werner Siemens-Foundation. Its aim is to allow the minimally invasive treatment of bones using laser beams. One day, it is expected that SpectoVive technology will be used in the planning of surgical procedures and for the navigation of the robot-guided laser system.

Further information

Professor Philippe C. Cattin, University of Basel, Department of Biomedical Engineering, Tel. +41 61 207 54 00, Email: philippe.cattin@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Virtual-Reality-in-Medici...

Olivia Poisson | Universität Basel

Further reports about: CT CT images Medicine Virtual Reality computer simulation virtual environment

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>