Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using 'Pacemakers' in spinal cord injuries

12.02.2016

Electrical stimulation helps restore movement patterns

Researchers from Charité – Universitätsmedizin Berlin and EPFL, Lausanne have succeeded in restoring motor function following spinal cord injury. The researchers were able to show that coordinated muscle movement is the result of alternating activation patterns emanating from the spinal cord.


Electrical stimulation of the spinal cord below the site of injury.

Copyright: European Project NEUwalk.

Newly-developed implants, which use electrical stimulation to mimic these signals, were used to target and reactivate specific segments of the spinal cord. Results from this study have been published in the current issue of the journal Nature Medicine.*

Paraplegia is the result of traumatic injury to the spinal cord. Communication between the brain and spinal cord is disrupted, which often leads to severe functional impairment and life-long paralysis. Research studies have shown that the spinal cord is capable of producing coordinated movements in response to electrical or chemical stimulation, even in the absence of signals from the brain.

“Our aim is to use electrical stimulation to restore spinal cord function below the site of injury. We are hoping to succeed in enhancing the body's own ability to produce voluntary movement by mimicking the natural spinal cord activity as closely as possible,” explains Dr. Nikolaus Wenger, who is involved in research at Charité's Department of Neurology and the Berlin Institute of Health.

Using an animal model, the team of European researchers was able to show that leg movements are associated with a wave-like activation of specific sections of the spinal cord. “In order to be able to reproduce this activity in paraplegic individuals, we developed permanent implants that are capable of selectively activating the spinal cord,” says Dr. Wenger.

Both strength and balance during locomotion can be improved by stimulating the spinal cord in the right place at the right time. The researchers' innovative implants and stimulation protocols allow the spinal cord to be activated based on continuous motion feedback.

Electrical stimulation of the spinal cord can also be used to generate movement in humans, which is why researchers are currently in the process of finding ways to translate these findings into clinical applications. This new method of stimulating the spinal cord may contribute to the development of improved treatments for patients with paraplegia. Following further developments, these new treatment approaches may also be adaptable for use in stroke research.

*N. Wenger, E. M. Moraud, J. Gandar, P. Musienko, M. Capogrosso, L. Baud, C. G Le Goff, Q. Barraud, N. Pavlova, N. Dominici, I. R. Minev, L. Asboth, A. Hirsch, S. Duis, J. Kreider, A. Mortera, O. Haverbeck, S. Kraus, F. Schmitz, J. DiGiovanna, R. van den Brand, J. Bloch, P. Detemple, S. P. Lacour, E. Bézard, S. Micera & G. Courtine. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med. 2016 Feb;22(2):138-145. doi: 10.1038/nm.4025. Epub 2016 Jan 18.

Contact:
Dr. Nikolaus Wenger
Klinik und Hochschulambulanz für Neurologie
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 660 206
Email:nikolaus.wenger@charite.de

Weitere Informationen:

http://www.charite.de/en/
http://neurologie.charite.de/en/research/
http://www.schlaganfallcentrum.de/en/
https://www.bihealth.org/en/

Manuela Zingl | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>