Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trial shows new imaging system may cut X-ray exposure for liver cancer patients

27.11.2014

Johns Hopkins researchers report that their test of an interventional X-ray guidance device approved by the U.S. Food and Drug Administration in 2013 has the potential to reduce the radiation exposure of patients undergoing intra-arterial therapy (IAT) for liver cancer.

In a report prepared for presentation Dec. 3 at the 100th annual meeting of the Radiological Society of North America in Chicago (abstract #SSM24-02), the researchers described the results of a clinical trial of the imaging system AlluraClarity, made by Philips Healthcare, on 50 patients with liver cancer.

Its use reduced radiation exposure up to 80 percent, compared with exposure from a standard imaging X-ray platform used in IAT, while producing images just as clear as the standard system, says Jean-Francois Geschwind, M.D., a professor in the Russell H. Morgan Department of Radiology and Radiological Science in the Johns Hopkins University School of Medicine and its Kimmel Cancer Center.

Geschwind says if further studies continue to affirm his team's findings, the platform may be especially useful for patients who need repeat therapy; children, who are especially vulnerable to radiation; and physicians who routinely use procedures such as IAT and are exposed to radiation.

During IAT, a physician inserts a thin, flexible tube directly into a blood vessel feeding a tumor, using that pathway to deliver chemotherapy or other drugs. X-ray imaging is used during the procedure to visualize the patient's blood vessels and to guide both the catheter's placement and drug delivery.

Geschwind and his colleagues compared the radiation exposure of 25 patients with liver cancer treated with IAT using the AlluraClarity platform to the exposure of 25 additional patients with liver cancer treated with IAT using Philips' previous X-ray imaging platform, called Allura.

Lowering the radiation power on standard X-ray imaging platforms can reduce the exposure, but without special image processing, the amount of image noise increases and physicians are unable to see small structures needed for good treatment, says Ruediger Schernthaner, M.D., a postdoctoral research fellow in vascular and interventional radiology at The Johns Hopkins Hospital. "You can compare this to an image taken with your cell phone in the evening without a flash," he says.

The AlluraClarity platform uses a series of real-time image processing algorithms to achieve high quality images at a lower radiation power, Schernthaner says.

Other researchers who contributed to the study include MingDe Lin of Philips Healthcare (makers of AlluraClarity) and Julius Chapiro, Rafael Duran, and Boris Gorodetski of The Johns Hopkins Hospital.

The study was funded by the Max Kade Foundation, the National Institutes of Health's National Cancer Institute (R01 CA160771) and Philips Research North America.

Geschwind is a consultant for BTG, Guerbet, Boston Scientific and Bayer Healthcare. He is a paid member of the Philips Radiology Medical Advisory Network. He has received grants from National Institutes of Health, Philips Healthcare (makers of AlluraClarity), the Department of Defense, BTG, Bayer HealthCare, Nordion, Context Vision, the Society of Interventional Radiology, the Radiological Society of North America and Guerbet. He is a founder and CEO of PreScience Labs, LLC.

RSNA Abstract: http://rsna2014.rsna.org/program/details/?emID=14011417

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $7 billion integrated global health enterprise and one of the leading academic health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 39 Johns Hopkins Community Physicians sites. The Johns Hopkins Hospital, opened in 1889, has been ranked number one in the nation by U.S. News & World Report for 22 years of the survey's 25 year history, most recently in 2013. For more information about Johns Hopkins Medicine, its research, education and clinical programs, and for the latest health, science and research news, visit http://www.hopkinsmedicine.org 

Vanessa Wasta | EurekAlert!

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>