Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The new version of syngo.via supports treatment decision-making in oncology

17.06.2015
  • Diagnostics software supports informed treatment decision-making and comprehensive treatment planning by compiling information from different imaging modalities
  • Early checking of treatment by means of a quantitative evaluation of the success of the treatment
  • Offline functionality for the interdisciplinary exchange of information


Cancer treatment is complex. The widely varying progressions of this disease require comprehensive diagnostics, an early check of treatment, and the exchange of information with colleagues. The new version of the diagnostics software syngo.via supports the treating physician in making decisions regarding treatment in oncology through a comprehensive portfolio of applications across imaging systems, treatments, and disciplines.


The new syngo.via – easier than ever

Discover a whole new user experience with syngo.via. You will love the refreshed look and feel and the intuitive operation. Also new: a Google-like search with the Patient Browser.


Imaging procedures play an important role in treatment planning. Multimodal image material not only provides information for a precise assessment of the tumor with regard to its position, morphology and metabolism, but it also forms the basis for radiotherapy planning. The application syngo.via RT Image Suite supports the radiotherapy oncologists in the demanding task of optimally using clinical images from various sources such as CT, MRT or PET-CT in order to contour the tumor to be irradiated and the surrounding tissue to be spared.

Another part of the oncology software portfolio is the application syngo.MR OncoCare. It allows an early, quantitative evaluation of the response of the tumor to the treatment. Thus, conclusions can be drawn about the success of the selected treatment method and, if necessary, this method can be adapted. Thus, the patient is spared from the continuation of ineffective treatment and the unnecessary costs associated with it.

In order to define the best possible treatment for each individual patient and successfully treat cancer, a wide variety of medical disciplines are drawn upon. Their representatives come together in regular, interdisciplinary meetings on this topic in so-called tumor boards. Syngo.MI Offline Oncoboard provides an IT solution in order to be able to present syngo.via findings of the various imaging procedures even on a standard PC and independently of a network connection.

syngo.via can be used as a standalone device or together with a variety of syngo.via-based software options, which are medical devices in their own right. syngo.via and the syngo.via based software options are not commercially available in all countries. Due to regulatory reasons its future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

You can find further information under www.siemens.com/syngo.via


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 357,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015060254HCEN


Contact
Mr. Thorsten Opderbeck
Healthcare
Siemens AG

Henkestr. 127

91052 Erlangen

Germany

Tel: +49 (9131) 84-4906

thorsten.opderbeck​@siemens.com

Thorsten Opderbeck | Siemens Healthcare

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>