Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termination of lethal arrhythmia with light

13.09.2016

A research team from the University of Bonn has succeeded for the first time in using light stimuli to stop life-threatening cardiac arrhythmia in mouse hearts. Furthermore, as shown in computer simulations at Johns Hopkins University, this technique could also be used successfully for human hearts. The study opens up a whole new approach to the development of implantable optical defibrillators, in which the strong electrical impulses of conventional defibrillators are replaced by gentler, pain-free light impulses. The "Journal of Clinical Investigation" has now published the results.

! When the heart muscle races and no longer contracts in an orderly fashion, sudden death often follows due to the lack of blood circulation. In such an emergency, a defibrillator helps to restore normal heart activity by means of intense electrical shocks.


A: Optogenetic defibrillation (blue bar) stops arrhythmia in mouse heart. B: Simulation of optogenetic defibrillation (red bar) in a model of a human heart.

© Image: Tobias Brügmann (University Bonn)/Patrick M. Boyle (Johns Hopkins University)

In patients with a known risk for these arrhythmia, the prophylactic implantation of a defibrillator is the treatment of choice. If ventricular fibrillation is detected, a pulse of electricity is automatically generated, which normalizes the excitation of the heart muscle and saves the person's life.

"When an implanted defibrillator is triggered, which unfortunately can also happen because of false detection of arrhythmia, it is always a very traumatic event for the patient", says the head of the study, Junior-Professor Philipp Sasse of the Institute of Physiology I at the University of Bonn.

"The strong electrical shock is verVentricular fibrillationy painful and can even damage the heart further". Therefore, Professor Sasse's team investigated the principles for a pain-free, gentler alternative. As the scientists have now shown, ventricular fibrillation can be stopped by optical defibrillation.

Optical defibrillation requires gene transfer

The team used the new method of "optogenetic" stimulation of mouse hearts, which had genes inserted for so-called channelrhodopsins. These channels are derived from a green algae and change the ion permeability of heart cell membranes when illuminated. When the researchers triggered ventricular fibrillation in the mouse heart, a light pulse of one second applied to the heart was enough to restore normal rhythm. "This is a very important result", emphasizes lead author Dr. med.

Tobias Brügmann of Professor Sasse's team. "It shows for the first time experimentally in the heart that optogenetic stimulation can be used for defibrillation of cardiac arrhythmia". It also worked in normal mice that received the channelrhodopsin through injection of a biotechnologically-produced virus. This shows a possible clinical application, because similar viruses have already been used for gene therapy in human patients.

Simulations show that findings could be applied to patients

But are the findings with mouse hearts applicable to humans? In order to answer this question, the scientists at the University of Bonn are working together with Prof. Natalia Trayanova’s Computational Cardiology Lab at the Institute for Computer Medicine and the Department of Biomedical Engineering at Johns Hopkins University (Baltimore, USA). There, optogenetic defibrillation is being tested in a computer model of the heart of a patient after cardiac infarction.

"Our simulations show that a light pulse to the heart would also stop the cardiac arrhythmia of this patient", reports Research Professor Patrick Boyle, who is also a lead author. To do so, however, the method from the University of Bonn had to be optimized for the human heart by using red light to stimulate the heart cells, instead of the blue light used in mice. This aspect of the study demonstrates the important role that can be played by computational modelling to guide and accelerate the systematic development of therapeutic applications for cardiac optogenetics, a technology that is still in its infancy.

Implantable optogenetic defibrillators could be feasible

"Our data show the fundamental feasibility of optogenetic defibrillation for the treatment of ventricular fibrillation", summarizes Prof. Sasse. Using light to return the fibrillating heart to a normal rhythm can be expected to be pain-free and much gentler for the patient than the use of electric shock. However, the new method is still in the stage of basic research. Until implantable optical defibrillators can be developed for the treatment of patients, it will still take at least five to ten years, estimates Prof. Sasse.

Publication: Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations, "Journal of Clinical Investigation", DOI: 10.1172/JCI88950

Contact for the media:

Junior Prof. Philipp Sasse
Institute of Physiology I
University of Bonn
Tel. +49-228-6885212
E-mail: philipp.sasse@uni-bonn.de

Dr. Tobias Brügmann
Institute of Physiology I
University of Bonn
Tel. +49-228-6885217
E-mail: tbruegmann@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>