Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016

Each year, millions of people--especially those 65 and older--fall. Such falls can be serious, leading to broken bones, head injuries, hospitalizations or even death. Now, researchers from the Sinclair School of Nursing and the College of Engineering at the University of Missouri found that sensors that measure in-home gait speed and stride length can predict likely falls. This technology can assist health providers to detect changes and intervene before a fall occurs within a three-week period.

"We have developed a non-wearable sensor system that can measure walking patterns in the home, including gait speed and stride length," said Marjorie Skubic, director of the MU Center for Eldercare and Rehabilitation Technology and professor of electrical and computer engineering. "Assessment of these functions through the use of sensor technology is improving coordinated health care for older adults"


A sensor system developed and used by researchers at the University of Missouri produces images and sends automatic email alerts that can be used to predict a fall within a three-week period.

Photo courtesy of MU Center for Eldercare and Rehabilitation Technology

To predict falls, researchers used data collected from sensor systems at TigerPlace, an innovative aging-in-place retirement residence, located in Columbia, Mo. The system generated images and an alert email for nurses indicating when irregular motion was detected. This information could be used to assist nurses in assessing functional decline, providing treatment and preventing falls.

"Aging should not mean that an adult suddenly loses his or her independence," said Marilyn Rantz, Curators' Professor Emerita of Nursing. "However, for many older adults the risk of falling impacts how long seniors can remain independent. Being able to predict that a person is at risk of falling will allow caretakers to intervene with the necessary care to help seniors remain independent as long as possible."

Results from an analysis of the sensor system data found that a gait speed decline of 5 centimeters per second was associated with an 86.3 percent probability of falling within the following three weeks. Researchers also found that shortened stride length was associated with a 50.6 percent probability of falling within the next three weeks.

Additional research led by Rantz and Skubic recently received an award from Mather LifeWays ® Institute on Aging. Their research has found that by integrating care coordination and sensor technology at TigerPlace, residents are able to live independently on average of four years compared to the national average of 22 months.

"Using embedded sensors in independent living to predict gait changes and falls," recently was published in the Western Journal of Nursing Research. Future research on the sensor systems will focus on how nurses can best use the fall prediction statistics to intervene before the fall occurs. Contributing to the study were MU researchers Lorraine Phillips, Chelsea DeRoche, Gregory Alexander, Laurel Despins, Carmen Abbott, Bradford Harris, Colleen Galambos and Richelle Koopman. Research was supported by the National Institutes of Health (RO1NR014255). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

Media Contact

Sheena Rice
RiceSM@missouri.edu
573-882-8353

 @mizzounews

http://www.missouri.edu 

Sheena Rice | EurekAlert!

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>