Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016

Each year, millions of people--especially those 65 and older--fall. Such falls can be serious, leading to broken bones, head injuries, hospitalizations or even death. Now, researchers from the Sinclair School of Nursing and the College of Engineering at the University of Missouri found that sensors that measure in-home gait speed and stride length can predict likely falls. This technology can assist health providers to detect changes and intervene before a fall occurs within a three-week period.

"We have developed a non-wearable sensor system that can measure walking patterns in the home, including gait speed and stride length," said Marjorie Skubic, director of the MU Center for Eldercare and Rehabilitation Technology and professor of electrical and computer engineering. "Assessment of these functions through the use of sensor technology is improving coordinated health care for older adults"


A sensor system developed and used by researchers at the University of Missouri produces images and sends automatic email alerts that can be used to predict a fall within a three-week period.

Photo courtesy of MU Center for Eldercare and Rehabilitation Technology

To predict falls, researchers used data collected from sensor systems at TigerPlace, an innovative aging-in-place retirement residence, located in Columbia, Mo. The system generated images and an alert email for nurses indicating when irregular motion was detected. This information could be used to assist nurses in assessing functional decline, providing treatment and preventing falls.

"Aging should not mean that an adult suddenly loses his or her independence," said Marilyn Rantz, Curators' Professor Emerita of Nursing. "However, for many older adults the risk of falling impacts how long seniors can remain independent. Being able to predict that a person is at risk of falling will allow caretakers to intervene with the necessary care to help seniors remain independent as long as possible."

Results from an analysis of the sensor system data found that a gait speed decline of 5 centimeters per second was associated with an 86.3 percent probability of falling within the following three weeks. Researchers also found that shortened stride length was associated with a 50.6 percent probability of falling within the next three weeks.

Additional research led by Rantz and Skubic recently received an award from Mather LifeWays ® Institute on Aging. Their research has found that by integrating care coordination and sensor technology at TigerPlace, residents are able to live independently on average of four years compared to the national average of 22 months.

"Using embedded sensors in independent living to predict gait changes and falls," recently was published in the Western Journal of Nursing Research. Future research on the sensor systems will focus on how nurses can best use the fall prediction statistics to intervene before the fall occurs. Contributing to the study were MU researchers Lorraine Phillips, Chelsea DeRoche, Gregory Alexander, Laurel Despins, Carmen Abbott, Bradford Harris, Colleen Galambos and Richelle Koopman. Research was supported by the National Institutes of Health (RO1NR014255). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

Media Contact

Sheena Rice
RiceSM@missouri.edu
573-882-8353

 @mizzounews

http://www.missouri.edu 

Sheena Rice | EurekAlert!

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>