Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel PET tracer identifies most bacterial infections

06.10.2017

The new imaging agent offers a non-invasive method of detecting infection and monitoring antibiotic therapy

Stanford University medical scientists have developed a novel imaging agent that could be used to identify most bacterial infections. The study is the featured basic science article in The Journal of Nuclear Medicine's October issue.


This figure shows A) bioluminescence images of CD1 mice bearing P. aeruginosa-infected wound (left panel) and control mice (right panel), and B) sagittal slices from micro PET/CT scan of the same mice 1 hour after intravenous administration of 6"-18F-fluoromaltotriose.

Courtesy of Sam Gambhir, MD, PhD, Stanford University

Bacteria are good at mutating to become resistant to antibiotics. As one way to combat the problem of antimicrobial resistance, the Centers for Disease Control and Prevention (CDC) has called for the development of novel diagnostics to detect and help manage the treatment of infectious diseases.

"We really lack tools in the clinic to be able to visualize bacterial infections," explains Sanjiv Sam Gambhir, MD, PhD, chair of the Radiology Department and director of Precision Health and Integrated Diagnostics at Stanford University in California.

"What we need is something that bacteria eat that your cells, so-called mammalian cells, do not. As it turns out, there is such an agent, and that agent is maltose, which is taken up only by bacteria because they have a transporter, called a maltodextrine transporter, on their cell wall that is able to take up maltose and small derivatives of maltose."

The traditional way of diagnosing bacterial infection involves biopsy of the infected tissue and/or blood and culture tests. Gambhir and colleagues developed a new positron emission tomography (PET) tracer, 6"-18F-fluoromaltotriose, that offers a non-invasive means of detection.

The agent is a derivative of maltose and is labeled with radioactive fluorine-18 (18F). For this study, the tracer was evaluated in several clinically relevant bacterial strains in cultures and in mouse models using a micro-PET/CT scanner. Its use to help monitor antibiotic therapies was also evaluated in rats.

The results show that 6"-18F-fluoromaltotriose was taken up in both gram-positive and gram-negative bacterial strains, and it was able to detect Pseudomonas aeruginosa in a clinically relevant mouse model of wound infection.

Gambhir points out, "This is the first time this particular maltotriose, labeled with fluorine-18, has been synthesized and used in animal models. It's able to pick up bacteria that may be present anywhere throughout your body, and it does not lead to an imaging signal from a site of infection that does not involve bacteria."

He notes that the new agent even identified an infection in the heart of an animal. "We could pick up very small bacterial foci in a heart valve. And then when those animals were treated with an antibiotic, we could see that the signal went away in the heart. So, the properties of the tracer of sensitivity, specificity, low background signal throughout the animal are now facilitating its translation into humans."

The results of this pre-clinical study demonstrate that 6"-18F-fluoromaltotriose is a promising new tracer for diagnosing most bacterial infections and has the potential to change the clinical management of patients suffering from infectious diseases of bacterial origin.

Looking ahead, Gambhir says, "The hope is that in the future when someone has a potential infection, this approach of injecting the patient with fluoromaltotriose and imaging them in a PET scanner will allow localization of the signal and, therefore, the bacteria. And then, as one treats them, one can verify that the treatment is actually working - so that if it's not working, one can quickly change to a different treatment (for example, a different antibiotic). These kinds of findings are very important for patients, because they will very likely lead to entirely new ways to manage patients with bacterial infections, no matter where those infections might be hiding in the body."

###

The authors of "Specific Imaging of Bacterial Infection using 6"-18F-Fluoromaltotriose: A Second-Generation PET Tracer Targeting the Maltodextrin Transporter in Bacteria" include Gayatri Gowrishankar, Jonathan Hardy, Mirwais Wardak, Mohammad Namavari, Robert E. Reeves, Evgenios Neofytou, Ananth Srinivasan, Joseph C. Wu, Christopher H. Contag, and Sanjiv Sam Gambhir, Stanford University School of Medicine, Stanford, California.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at 703-652-6773 or lcallahan@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 15,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Media Contact

Laurie Callahan
lcallahan@snmmi.org

 @SNM_MI

http://www.snm.org 

Laurie Callahan | EurekAlert!

More articles from Medical Engineering:

nachricht Bio stents increase risk of heart attack
02.11.2017 | Universitätsspital Bern

nachricht World´s smallest jet engine invented in Stuttgart
25.10.2017 | Max-Planck-Institut für Intelligente Systeme

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Scientists find missing clue to how HIV hacks cells to propagate itself

09.11.2017 | Life Sciences

Bringing Natural Killer cells to the tumor battlefield

09.11.2017 | Life Sciences

Visual intelligence is not the same as IQ

09.11.2017 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>