Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel PET tracer identifies most bacterial infections


The new imaging agent offers a non-invasive method of detecting infection and monitoring antibiotic therapy

Stanford University medical scientists have developed a novel imaging agent that could be used to identify most bacterial infections. The study is the featured basic science article in The Journal of Nuclear Medicine's October issue.

This figure shows A) bioluminescence images of CD1 mice bearing P. aeruginosa-infected wound (left panel) and control mice (right panel), and B) sagittal slices from micro PET/CT scan of the same mice 1 hour after intravenous administration of 6"-18F-fluoromaltotriose.

Courtesy of Sam Gambhir, MD, PhD, Stanford University

Bacteria are good at mutating to become resistant to antibiotics. As one way to combat the problem of antimicrobial resistance, the Centers for Disease Control and Prevention (CDC) has called for the development of novel diagnostics to detect and help manage the treatment of infectious diseases.

"We really lack tools in the clinic to be able to visualize bacterial infections," explains Sanjiv Sam Gambhir, MD, PhD, chair of the Radiology Department and director of Precision Health and Integrated Diagnostics at Stanford University in California.

"What we need is something that bacteria eat that your cells, so-called mammalian cells, do not. As it turns out, there is such an agent, and that agent is maltose, which is taken up only by bacteria because they have a transporter, called a maltodextrine transporter, on their cell wall that is able to take up maltose and small derivatives of maltose."

The traditional way of diagnosing bacterial infection involves biopsy of the infected tissue and/or blood and culture tests. Gambhir and colleagues developed a new positron emission tomography (PET) tracer, 6"-18F-fluoromaltotriose, that offers a non-invasive means of detection.

The agent is a derivative of maltose and is labeled with radioactive fluorine-18 (18F). For this study, the tracer was evaluated in several clinically relevant bacterial strains in cultures and in mouse models using a micro-PET/CT scanner. Its use to help monitor antibiotic therapies was also evaluated in rats.

The results show that 6"-18F-fluoromaltotriose was taken up in both gram-positive and gram-negative bacterial strains, and it was able to detect Pseudomonas aeruginosa in a clinically relevant mouse model of wound infection.

Gambhir points out, "This is the first time this particular maltotriose, labeled with fluorine-18, has been synthesized and used in animal models. It's able to pick up bacteria that may be present anywhere throughout your body, and it does not lead to an imaging signal from a site of infection that does not involve bacteria."

He notes that the new agent even identified an infection in the heart of an animal. "We could pick up very small bacterial foci in a heart valve. And then when those animals were treated with an antibiotic, we could see that the signal went away in the heart. So, the properties of the tracer of sensitivity, specificity, low background signal throughout the animal are now facilitating its translation into humans."

The results of this pre-clinical study demonstrate that 6"-18F-fluoromaltotriose is a promising new tracer for diagnosing most bacterial infections and has the potential to change the clinical management of patients suffering from infectious diseases of bacterial origin.

Looking ahead, Gambhir says, "The hope is that in the future when someone has a potential infection, this approach of injecting the patient with fluoromaltotriose and imaging them in a PET scanner will allow localization of the signal and, therefore, the bacteria. And then, as one treats them, one can verify that the treatment is actually working - so that if it's not working, one can quickly change to a different treatment (for example, a different antibiotic). These kinds of findings are very important for patients, because they will very likely lead to entirely new ways to manage patients with bacterial infections, no matter where those infections might be hiding in the body."


The authors of "Specific Imaging of Bacterial Infection using 6"-18F-Fluoromaltotriose: A Second-Generation PET Tracer Targeting the Maltodextrin Transporter in Bacteria" include Gayatri Gowrishankar, Jonathan Hardy, Mirwais Wardak, Mohammad Namavari, Robert E. Reeves, Evgenios Neofytou, Ananth Srinivasan, Joseph C. Wu, Christopher H. Contag, and Sanjiv Sam Gambhir, Stanford University School of Medicine, Stanford, California.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at 703-652-6773 or Current and past issues of The Journal of Nuclear Medicine can be found online at

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 15,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit

Media Contact

Laurie Callahan


Laurie Callahan | EurekAlert!

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>