Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Focuses Diffuse Light Inside Living Tissue

07.01.2015

Lihong Wang, PhD, continues to build on his groundbreaking technology that allows light deep inside living tissue during imaging and therapy.

In the Jan. 5 issue of Nature Communications, Wang, the Gene K. Beare Professor of Biomedical Engineering at Washington University in St. Louis, reveals for the first time a new technique that focuses diffuse light inside a dynamic scattering medium containing living tissue. In addition, they have improved the speed of optical focusing deep inside tissue by two orders of magnitude. This improvement in speed is an important step toward noninvasive optical imaging in deep tissue and photodynamic therapy.


Washington University in St. Louis

Lihong Wang, PhD

In the new research, Wang and his team have built on a technique they developed in 2010 to improve the focusing speed of time-reversed ultrasonically encoded (TRUE) optical focusing for applications in living tissue. To focus light, the engineers use a virtual internal guide star at the targeted location. By detecting the wavefront of light emitted from the guide star, they can determine an optimum phase pattern that allows scattered light moving along different paths to focus at the targeted location.

When light is shined into living biological tissue, breathing and blood flow changes the optical interference, or speckle pattern, which can cause previous methods to focus diffuse light inside scattering media to fail. Scientists have to act quickly to get a clear image.

The new TRUE technology combines two techniques: focused ultrasonic modulation and optical phase conjugation. Researchers use a type of mirror to record then time-reverse the ultrasound-modulated light emitted from the ultrasonic focus to achieve the best focus. Previously, technology limited the speed of TRUE focusing to no more than 1 Hz.

To overcome this obstacle, the team used a fast-responding photorefractive crystal that is sensitive to light at the 790-nanometer wavelength, making it suitable to focus light deep into biological tissue. The new TRUE technology is able to focus light inside a dynamic medium with a speckle correlation time as short as 5.6 milliseconds. The improved speed allowed Wang to achieve the first optical focusing of diffuse light inside a scattering medium containing living biological tissue.

Going forward, the team plans to implement the system in a reflection configuration, where light is shined and detected on the same side of the tissue.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 91 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Liu Y, Lai P, Ma C, Xu X, Grabar A, Wang LV. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications, online Jan. 5, 2015. DOI: 10.1038/ncomms6904.

Funding from the National Institutes of Health (DP1 EB016986 and R01 CA186567) supported this research.

Contact Information
Julie Flory
Asst. Vice Chancellor for Campus Communications
Phone: 314-935-5408
julie.flory@wustl.edu

Julie Flory | newswise
Further information:
http://www.wustl.edu

More articles from Medical Engineering:

nachricht UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy
22.11.2017 | University of California - Los Angeles

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>