Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New picture, new insight

06.01.2015

MRI scan sensitive to metabolic changes reveals brain differences in bipolar disorder

Sometimes, a new way of looking at something can bring to light an entirely new perspective.


Using an MRI technique that is sensitive to certain byproducts of cell metabolism, including levels of glucose and acidity, University of Iowa researchers discovered previously unrecognized differences in the brains of patients with bipolar disorder. The T1rho MRI scans showed brain regions of elevated signal in the 15 participants with bipolar disorder compared to the 25 participants who did not have bipolar disorder. The primary regions of difference are the cerebral white matter (yellow) and the cerebellum (red).

Credit: University of Iowa

Using a different type of MRI imaging, researchers at the University of Iowa have discovered previously unrecognized differences in the brains of patients with bipolar disorder. In particular, the study, published Jan. 6 in the journal Molecular Psychiatry, revealed differences in the white matter of patients' brains and in the cerebellum, an area of the brain not previously linked with the disorder. Interestingly, the cerebellar differences were not present in patients taking lithium, the most commonly used treatment for bipolar disorder.

"This imaging technique appears to be sensitive to things that just have not been imaged effectively before. So it's really providing a new picture and new insight into the composition and function of the brain [in bipolar disease]," says John Wemmie, MD, PhD, UI professor of psychiatry and senior study author.

Bipolar disorder affects about 1 percent of the population. Despite being relatively common, scientists do not have a good understanding of what causes this psychiatric condition, which is characterized by sudden mood shifts from normal to depressed or to an abnormally elevated or "manic" mood state.

The study examined 15 patients with bipolar disorder and 25 control subjects matched for age and gender. The bipolar patients were all in normal (euthymic) mood state during the study.

The UI team imaged the participants' brains using an MRI approach known as quantitative high-resolution T1 rho mapping, which is sensitive to certain byproducts of cell metabolism, including levels of glucose and acidity in the brain. Compared to the brains of people without bipolar disorder, the researchers found that the MRI signal was elevated in the cerebral white matter and the cerebellar region of patients affected by bipolar disorder. The elevated signal may be due to either a reduction in pH or a reduction in glucose concentration - both factors influenced by cell metabolism.

Previous research has suggested that abnormal cell metabolism may play a role in bipolar disorder. However, investigating metabolic abnormalities in the brain has been hindered by lack of a good imaging tools. Available methods are slow, low-resolution, and require researchers to identify the region of interest at the beginning of the study. In contrast, the new imaging approach can rapidly acquire a high-resolution image of the whole brain. The study is the first time this MRI technique has been used to investigate a psychiatric disease.

One reason researchers didn't know that the cerebellum might be important in bipolar disorder, is because no one chose to look there, says Casey Johnson, PhD, UI postdoctoral researcher and first author on the study.

"Our study was essentially exploratory. We didn't know what we would find," he adds. "The majority of bipolar disorder research has found differences in the frontal region of the brain. We found focal differences in the cerebellum, which is a region that hasn't really been highlighted in the bipolar literature before."

Spurred on by the finding, Johnson and Wemmie conducted an extensive search of the scientific literature on bipolar disorder and began to find pieces of evidence that suggested that the cerebellum may function abnormally in bipolar disorder and that lithium might potentially target the cerebellum and alter glucose levels in this brain region.

"Our paper, with this new technique, starts to bring all these pieces of evidence together for the first time," Johnson says.

Wemmie hopes that the new insights provided by the T1 rho imaging might help refine understanding of the abnormalities that underlie bipolar disease and lead to better ways to diagnose and treat this problem.

While lithium can be an effective mood stabilizer for people with bipolar disorder, it causes numerous unpleasant side effects for patients.

"If lithium's effect on the cerebellum is the key to its effectiveness as a mood stabilizer, then a more targeted treatment that causes the same change in the cerebellum without affecting other systems might be a better treatment for patients with bipolar disorder," Wemmie says.

###

In addition to Wemmie and Johnson, the study team included UI researcher Jess Fiedorowicz, Vincent Magnotta, Robin Follmer, Ipek Oguz, Lois Warren, and Gary Christensen.

A major source of funding for the research was a philanthropic gift from UI alumnus Roger Koch, who established the Roger L. Koch Mental Illness Research Fund in 2010 through the University of Iowa Foundation. (http://www.engineering.uiowa.edu/news/ui-grad-roger-koch-gives-2-million-engineering-research-bipolar-disorders)

The study was also supported by grants from the National Institutes of Health, the Department of Veterans Affairs, and NARSAD.

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com/index.html

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>