Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI technique induces strong, enduring visual association

01.07.2016

Researchers have made two new scientific points with a set of experiments in which they induced people to perceive colors that weren't really there -- one concerning how the brain works and the other concerning how to work the brain.

Working with colleagues in Japan, the scientists at Brown University used a novel technique to surreptitiously train a small group of volunteers to associate vertical stripes with the color red and -- to a lesser extent as a consequence -- horizontal stripes with the color green.


Participants in a set of experiments were unknowingly trained to associate red with vertical stripes, even when the background was gray or green.

Credit: Watanabe et. al.

The first point made by the researchers was that the association was induced by specifically targeting the early visual areas of the brain. Those "V1" and "V2" areas are the first parts of the cortex to process basic visual information coming from the eyes, but scientists had not previously seen associative learning occurring there.

"This is the first clear study that shows that V1 and V2 are capable of creating associative learning," said Takeo Watanabe, the Fred M. Seed Professor of Cognitive and Linguistic Sciences at Brown and co-corresponding author of the paper in the journal Current Biology.

The second point is that the association was learned strongly enough that subjects came to perceive the background colors paired with vertical bars as red even when the background was gray or sometimes a bit greenish. That learned misperception was evident in tests as much as five months later.

The demonstration raises the possibility that the training method could be used to induce other enduring associations in the brain, Watanabe said.

To assign association

Here is how Watanabe's team induced the association:

With volunteers in the magnetic resonance imaging scanner, the first step was to measure patterns of activity in V1 and V2 when they saw different combinations of colored backgrounds (red, green and gray) behind two different stripe orientations (vertical and horizontal). The researchers used that data to encode a "classifier" that could distinguish between red and green to recognize the brain activity the volunteers induced in those areas in future experiments.

Then the experimenters engaged in a subterfuge even greater than a little mind reading. With the intent of training 12 of their 18 volunteers to associate red with vertical stripes, they showed them gray backgrounded vertical stripes embedded within a circle and then a small plain white disk. They asked the volunteers to imagine ways of making the disk larger. The volunteers were offered a reward based on the size of the disk they could produce.

Over three days of such training, volunteers thought of a variety of ways they might use their brains to enlarge the disk, but really the disk only got larger when the classifier saw signs they were thinking of red (for whatever coincidental reason). In other words, the 12 volunteers were really being trained such that after seeing vertical stripes they would induce activity patterns in V1 and V2 similar to the activity that had occurred when they actually saw red.

"Participants were not aware of the purpose of the experiment or what kind of activation they learned to induce," Watanabe said.

After the 12 volunteers had been trained and the six others were left untrained, the researchers then measured their visual perceptions. Both groups of volunteers were shown circles with central patterns of vertical, horizontal or diagonal stripes. Each of those patterns had backgrounds colored somewhere along a continuum of eight settings ranging from obviously to faintly green to gray to faintly to obviously red.

The key question was whether the trained and untrained subjects would exhibit any differences in the colors they perceived in the backgrounds behind the vertical stripes. Sure enough, trained subjects were significantly more likely than untrained ones to perceive the gray background of vertical stripes -- and even the faintly green background -- as red. Meanwhile, trained subjects were more likely to associate backgrounds behind horizontal stripes as greener than untrained subjects.

Neither group showed any incorrect color bias in judging the backgrounds behind the diagonal stripes. In testing up to five months later, however, trained subjects still showed significant associations for vertical gratings.

Applications of associations

Associative learning and memory -- "this goes with that" -- is pervasive in the brain, but it was a novel finding of basic brain science to show that it can occur in early visual areas, Watanabe said.

In a more applied vein, Watanabe said he is eager to find out if scientists can use the study's technique of training subjects with (unwitting) MRI-based feedback to create associations in other parts of the brain for educational or therapeutic reasons.

"Our brain functions are mostly based on associative processing, so association is extremely important," Watanabe said. "Now we know that this technology can be applied to induce associative learning."

Through the technique, which Watanabe calls A-DecNef, perhaps people can learn even when they don't know what they are learning, or that they are learning at all.

###

The paper's lead author is Kaoru Amano of Center for Information and Neural Networks (CiNet) in National Institute of Information and Communications Technology. The co-corresponding author is Mitsuo Kawato of the Advanced Telecommunications Research Institute International in Japan. The other authors are Kazuhisa Shibata and Yuka Sasaki of Brown.

The National Institutes of Health, the National Science Foundation and the government of Japan supported the research.

David Orenstein | EurekAlert!

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>