Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI technique induces strong, enduring visual association

01.07.2016

Researchers have made two new scientific points with a set of experiments in which they induced people to perceive colors that weren't really there -- one concerning how the brain works and the other concerning how to work the brain.

Working with colleagues in Japan, the scientists at Brown University used a novel technique to surreptitiously train a small group of volunteers to associate vertical stripes with the color red and -- to a lesser extent as a consequence -- horizontal stripes with the color green.


Participants in a set of experiments were unknowingly trained to associate red with vertical stripes, even when the background was gray or green.

Credit: Watanabe et. al.

The first point made by the researchers was that the association was induced by specifically targeting the early visual areas of the brain. Those "V1" and "V2" areas are the first parts of the cortex to process basic visual information coming from the eyes, but scientists had not previously seen associative learning occurring there.

"This is the first clear study that shows that V1 and V2 are capable of creating associative learning," said Takeo Watanabe, the Fred M. Seed Professor of Cognitive and Linguistic Sciences at Brown and co-corresponding author of the paper in the journal Current Biology.

The second point is that the association was learned strongly enough that subjects came to perceive the background colors paired with vertical bars as red even when the background was gray or sometimes a bit greenish. That learned misperception was evident in tests as much as five months later.

The demonstration raises the possibility that the training method could be used to induce other enduring associations in the brain, Watanabe said.

To assign association

Here is how Watanabe's team induced the association:

With volunteers in the magnetic resonance imaging scanner, the first step was to measure patterns of activity in V1 and V2 when they saw different combinations of colored backgrounds (red, green and gray) behind two different stripe orientations (vertical and horizontal). The researchers used that data to encode a "classifier" that could distinguish between red and green to recognize the brain activity the volunteers induced in those areas in future experiments.

Then the experimenters engaged in a subterfuge even greater than a little mind reading. With the intent of training 12 of their 18 volunteers to associate red with vertical stripes, they showed them gray backgrounded vertical stripes embedded within a circle and then a small plain white disk. They asked the volunteers to imagine ways of making the disk larger. The volunteers were offered a reward based on the size of the disk they could produce.

Over three days of such training, volunteers thought of a variety of ways they might use their brains to enlarge the disk, but really the disk only got larger when the classifier saw signs they were thinking of red (for whatever coincidental reason). In other words, the 12 volunteers were really being trained such that after seeing vertical stripes they would induce activity patterns in V1 and V2 similar to the activity that had occurred when they actually saw red.

"Participants were not aware of the purpose of the experiment or what kind of activation they learned to induce," Watanabe said.

After the 12 volunteers had been trained and the six others were left untrained, the researchers then measured their visual perceptions. Both groups of volunteers were shown circles with central patterns of vertical, horizontal or diagonal stripes. Each of those patterns had backgrounds colored somewhere along a continuum of eight settings ranging from obviously to faintly green to gray to faintly to obviously red.

The key question was whether the trained and untrained subjects would exhibit any differences in the colors they perceived in the backgrounds behind the vertical stripes. Sure enough, trained subjects were significantly more likely than untrained ones to perceive the gray background of vertical stripes -- and even the faintly green background -- as red. Meanwhile, trained subjects were more likely to associate backgrounds behind horizontal stripes as greener than untrained subjects.

Neither group showed any incorrect color bias in judging the backgrounds behind the diagonal stripes. In testing up to five months later, however, trained subjects still showed significant associations for vertical gratings.

Applications of associations

Associative learning and memory -- "this goes with that" -- is pervasive in the brain, but it was a novel finding of basic brain science to show that it can occur in early visual areas, Watanabe said.

In a more applied vein, Watanabe said he is eager to find out if scientists can use the study's technique of training subjects with (unwitting) MRI-based feedback to create associations in other parts of the brain for educational or therapeutic reasons.

"Our brain functions are mostly based on associative processing, so association is extremely important," Watanabe said. "Now we know that this technology can be applied to induce associative learning."

Through the technique, which Watanabe calls A-DecNef, perhaps people can learn even when they don't know what they are learning, or that they are learning at all.

###

The paper's lead author is Kaoru Amano of Center for Information and Neural Networks (CiNet) in National Institute of Information and Communications Technology. The co-corresponding author is Mitsuo Kawato of the Advanced Telecommunications Research Institute International in Japan. The other authors are Kazuhisa Shibata and Yuka Sasaki of Brown.

The National Institutes of Health, the National Science Foundation and the government of Japan supported the research.

David Orenstein | EurekAlert!

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>