Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical gamma-ray camera is now palm-sized

23.05.2017

World's first demonstration of multicolor 3-D in vivo imaging using ultra-compact Compton camera with dramatically reduced measurement time

As represented by conventional radiograph, radiological images provide only black and white figures in 2D space. The situation is basically the same for Single photon emission tomography (SPECT) and positron emission tomography (PET), which are the two most common molecular imaging techniques used in nuclear medicine. PET is used especially for early cancer and Alzheimer's disease detection, but radioactive tracers suitable for each detector are limited in terms of energy. For example, PET can only image monochromatic gamma rays thus provide black and white 2D images. Moreover, production of PET tracers, usually made by a cyclotron facility in medical centers, is inevitably costly.


The Compton camera only weighs 580g and is palm-sized, making it the world most compact medical gamma-ray detector.

Credit: Waseda University

"All of these problems could be addressed if gamma rays of arbitrary energy could be easily visualized in 3D space," points out Jun Kataoka, professor of applied physics at Waseda University. "This would be as revolutionary as black and white television turning into color, dramatically increasing the amount of information we could obtain from an image."

Thus, Professor Kataoka's research group invented a medical gamma-ray detector (Compton camera) and succeeded in high-resolution, multicolor 3D molecular imaging of a live mouse which was administered with three different radioactive tracers. They discovered that the tracers iodine, strontium, and zinc accumulated in the thyroid, bones and liver respectively, confirming that these new tracers concentrated in each target organ.

What's more, this camera only weighs 580g and fits in the palm of a hand, making it the world's most compact Compton camera.

"The measurement time took 10 minutes per angle, so we were able to obtain an image taken from 12 angles in just 2 hours. The time could be reduced even more by using multiple Compton cameras. For example, if there are 12 Compton cameras surrounding an object, the same image as this study could be obtained in just 10 minutes, suggesting a new way to understand biodynamics by looking at how a drug is taken into the body in 10-minute increments."

This research was published in Scientific Reports.

Although SPECT and PET are widely used, the radioactive tracers suitable for each detector have been limited. SPECT only images low-energy gamma rays less than 400 kilo-electron volts (keV), and PET can image only positron emitting sources of 511keV. Thus, the use of a Compton camera, which can image energy from a few hundred keV to more than mega-electron volts (MeV), was eagerly awaited for, along with development of new potential tracers.

Professor Kataoka's research group developed the world's lightest, medical Compton camera with high detection efficiency and practical spatial resolution, enabling flexible measurements. The camera was then rotated around the mouse from 12 angles, which was administered with three different radioactive tracers: iodine (131I, 364 keV), strontium (85Sr, 514 keV), and zinc (65Zn, 1116 keV). The measurement time totaled 2 hours, and the group successfully demonstrated the effectiveness of simultaneous in vivo imaging of multiple tracers and imaged the gamma rays nearly real-time with a resolution of 3mm, equivalent to PET.

Based on this study, Professor Kataoka is now working towards developing a gamma-ray camera which works like the human eye. "The human eye can instantly distinguish the colors and brightness of light from all directions, as well as determine the object's shape in 3D from the displacement between the left and right eye. Therefore, stereoscopic imaging becomes theoretically feasible by using multiple ultra-compact Compton cameras."

Though not limited to the medical field, this technology could help track behaviors of cancer cells and minerals in the body by combining the conventional PET drugs with newly found tracers, calculate the survival rate of a transplanted organ, develop cheaper and more convenient drugs for medical imaging, and monitor online the effectiveness of particle therapy by measuring various prompt gamma rays emitted during treatment.

"As radiation technology is still emerging, we look forward to expanding the possibilities of next-generation radiation imaging with this 'on demand' Compton camera," Professor Kataoka says.

###

*All of the animal experiments were approved by the animal ethics committees of Osaka University and were performed according to the institutional guidelines.

Reference

Title: First demonstration of multi-color 3D in vivo imaging using ultra-compact Compton camera
Published in: Scientific Reports
Authors: Aya Kishimoto (1), Jun Kataoka (1), Takanori Taya (1), Leo Tagawa (1), Saku Mochizuki (1), Shinji Ohsuka (2), Yuto Nagao (3), Keisuke Kurita (3), Mitsutaka Yamaguchi (3), Naoki Kawachi (3), Keiko Matsunaga (4), Hayato Ikeda (4), Eku Shimosegawa (4), and Jun Hatazawa (4)
1. Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
2. Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
3. National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
4. Medical Imaging Center for Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan

Corresponding author: Jun Kataoka

About Waseda University

Waseda University is a leading private, non-profit institution of higher education based in central Tokyo, with over 50,000 students in 13 undergraduate and 21 graduate schools. Founded in 1882, Waseda cherishes three guiding principles: academic independence, practical innovation and the education of enlightened citizens. Established to mold future leaders, Waseda continues to fulfill this mission, counting among its alumni seven prime ministers and countless other politicians, business leaders, journalists, diplomats, scholars, scientists, actors, writers, athletes and artists.

Waseda is number one in Japan in international activities, including number of incoming and outgoing study abroad students, with the broadest range of degree programs taught fully in English, and exchange partnerships with over 600 top institutions in 84 countries.

Lam Wei Chuan | EurekAlert!

Further reports about: 3D PET SPECT detector gamma rays human eye radioactive tracers

More articles from Medical Engineering:

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

nachricht 2 million euros in funding for new MR-compatible electrophysiological brain implants
18.12.2017 | Max-Planck-Institut für biologische Kybernetik

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>