Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser-assisted wound closure for oral and maxillofacial surgery


Partners from Germany, Israel, Latvia and Italy will systematically advance the use of biophotonic technologies for industrial, clinical and medical applications in the Biophotonic Technologies for Tissue Repair (BI-TRE) project. As part of the transnational BiophotonicsPlus initiative, the German consortium commenced its activities on September 1, 2015. The goal is to supply oral and maxillofacial surgery with a laser-assisted method for reliable post-operation wound closure. Within the consortium, the Fraunhofer Institute for Laser Technology ILT is responsible for project coordination and also process development for the successful laser fixation of a collagen membrane.

Before now, for the post-surgical treatment of oral wounds and defects beyond a certain size, there was no alternative to covering them with compresses or performing an autologous skin or mucosal graft, which often entails complex suturing techniques.

Fig. 1: Laboratory prototype of a handpiece for oral surgery.

© Fraunhofer ILT, Aachen.

An adhesive wound covering that reliably keeps out germs in the mouth and throat area thus remains an unresolved problem to this day. However, the BI-TRE project is working on a new approach that involves covering the wound with collagen membranes, which are attached to the mucosa using a laser-assisted technique.

The goal is to obtain improved protection against germs and enable wounds to heal faster. In addition, the new method has the potential to greatly reduce treatment costs. Treatment times can be shortened considerably, and patients are spared the discomfort of a graft and the additional wound this entails.

Pooled expertise

Adapting the laser beam source, designing a special handpiece, developing suitable wound dressings and integrating temperature sensors are all prerequisites for the success of the approach. To accomplish these tasks, different project partners are specialized in the respective fields:

• DILAS GmbH (supplying an optimized laser beam source)
• LifePhotonic GmbH (handpiece and system integration)
• botiss biomaterials GmbH (developing the collagen membrane)
• Universitätsklinikum Hamburg-Eppendorf (clinical expertise)
• Fraunhofer ILT (project coordination and process development)

The BI-TRE project is funded by the German Federal Ministry of Education and Research (BMBF); VDI Technologiezentrum is the project management agency.

Weitere Informationen:

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>