Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infrared thermography can detect joint inflammation and help improving work ergonomics


Infrared thermography can help detect joint inflammation and help improving work ergonomics, according to a recent study from the University of Eastern Finland.

All objects with a temperature above absolute zero emit infrared radiation as a result of the thermal motion of their molecules. Infrared thermography (IRT) is an imaging modality that can be used to detect this thermal radiation. Human skin emits infrared radiation almost like a perfect black body, and IRT is thus well suited for the measurement of skin temperature.

An example case of ankle joint inflammation: the maximum skin temperature of the inflamed joint is higher than in the non-inflamed joint.

Credit: Roope Lasanen

However, although the human core temperature may be indicative of several bodily dysfunctions, there is still a lack of scientific evidence about which musculoskeletal diseases or conditions can be diagnosed by evaluating skin surface temperature with IRT. Nonetheless, since it is a non-invasive and straightforward technique, IRT may represent a cost-effective alternative to the more traditional imaging modalities.

The study evaluated the capability of IRT to detect inflammation in knee and ankle joints in children, and found that skin surface temperatures were significantly elevated in inflamed ankle joints, but not in inflamed knee joints. This means that IRT can be used as a tool for detecting joint inflammation in ankle joints; however, further research is needed to determine whether IRT can be used to detect inflammation in knee joints.

As healthcare costs are continuously spiralling, there is a clear demand for new diagnostic imaging modalities at the level of basic healthcare. This could ease the workload in specialized healthcare, make diagnostics more accessible and help reduce overall costs.

"In the future, IRT may become a complementary clinical assessment tool, and it can help in therapeutic decision-making," says researcher Roope Lasanen of the University of Eastern Finland.

Infrared thermography a tool for evaluating work ergonomics

The study also analysed skin temperature in relation to various musculoskeletal conditions. Work ergonomics was evaluated by means of IRT and surface electromyography combined with a subjective assessment conducted by a neck disability index. The study found that IRT demonstrated potential in evaluating office ergonomics and that spatial variation of upper back skin temperature was a promising measure in ergonomic assessments.

Cooling menthol gels - cold on the spot

The study also used IRT to evaluate the effect on skin temperature of the menthol concentration in cold gels commonly used for the treatment of muscle injuries. Although menthol-based cold gels are very widespread, very little is known about how the menthol concentration affects skin temperature. The study found that changes in the menthol concentration did not seem to have any significant effect on skin cooling. Furthermore, cold gels did not have a significant effect on skin temperature in surrounding skin areas adjacent to the gel application site.


The findings were originally published in Physiological Measurement, and Skin Research and Technology (in press).

The doctoral dissertation of Roope Lasanen, MSc, entitled Infrared thermography in the evaluation of skin temperature: Applications in musculoskeletal conditions is available for download at

For further information, please contact:

Researcher Roope Lasanen, tel. +358 443666196,

Media Contact

Roope Lasanen


Roope Lasanen | EurekAlert!

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>