Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher wear comfort and functionality with 3-D printed otoplastics

09.10.2015

Wear comfort and excellent sound transmission are essential for people who use in-ear hearing aids or headsets. Since June 2015, the Laser Zentrum Hannover e.V. (LZH) and seven partners have been working in the group 3D-PolySPRINT on increasing both the functionality and wear comfort, and simultaneously on reducing delivery times. They are focusing on non-tactile imaging and combined multi-material 3-D printing processes in order to manufacture otoplastics which are optimally adapted to the auditory canal.

For a hearing aid or an individualized in-ear-headset, presently a mold of the ear is made, then digitized and finally used to manufacture the otoplastic. The project partners of 3D-PolySPRINT want to fundamentally change this approach.


Participants at the Kick-Off-Meeting in July, in front of the Sennheiser Innovation Campus.

Photo: Sennheiser

Digital Mold of the Auditory Canal

Using the non-tactile imaging method of optical coherence tomography (OCT), they want to make a digital image of the auditory canal without having to make a mold. First the ear is optically scanned, and the form is digitized.

For the next step, the group Image-Guided Laser Surgery of the LZH is developing a software which converts the raw image data of the scan to a construction file. Once in the computer, the data can be further processed quickly, and molds do not need to be sent to other sites, and then scanned.

A hard core and a soft covering

Using the digitized data of the individual ear, the partners want to optimize both the function and the wear comfort of the ear mold for the customer, and avoid unpleasant pressure sores. To achieve this, the partners are combining two additive manufacturing processes, spray coating and Laser Transfer Printing (LTP), in order to join two different materials together, and to make a hardness profile within the ear mold.

The Laser Micromachining Group of the LZH is developing the necessary process, and is examining the new materials concerning their suitability, always keeping the criteria of the end users Sennheiser electronic GmbH & Co KG and KIND Hörgeräte GmbH in mind.

Increasing wear comfort and decreasing delivery times

With this innovative process chain of OCT and 3-D printing, not only the manufacturing of the otoplastics is considerably more pleasant for the customers. Also, the headset or the hearing aid would be usable for longer periods of time, it would provide better sound quality, and it would reach the customer at least a day earlier.

About 3D-PolySPRINT

The joint project 3D-PolySPRINT is being coordinated by the Sennheiser electronic GmbH & Co. KG and consists of the companies KIND Hörgeräte GmbH & Co. KG, OptoMedical Technologies GmbH, Materialise GmbH, Dreve ProDiMed GmbH, microTEC Gesellschaft für Mikrotechnologie mbH, LPKF Laser & Electronics AG and the LZH.

The work is being funded within the call for proposals “Photonic Process Chains” within the framework of the programs “Photonic Research Germany” and “Material Technologies for Industry and Society (WING)” through the German Federal Ministry of Education and Research, and will be running for three years.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>