Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher wear comfort and functionality with 3-D printed otoplastics

09.10.2015

Wear comfort and excellent sound transmission are essential for people who use in-ear hearing aids or headsets. Since June 2015, the Laser Zentrum Hannover e.V. (LZH) and seven partners have been working in the group 3D-PolySPRINT on increasing both the functionality and wear comfort, and simultaneously on reducing delivery times. They are focusing on non-tactile imaging and combined multi-material 3-D printing processes in order to manufacture otoplastics which are optimally adapted to the auditory canal.

For a hearing aid or an individualized in-ear-headset, presently a mold of the ear is made, then digitized and finally used to manufacture the otoplastic. The project partners of 3D-PolySPRINT want to fundamentally change this approach.


Participants at the Kick-Off-Meeting in July, in front of the Sennheiser Innovation Campus.

Photo: Sennheiser

Digital Mold of the Auditory Canal

Using the non-tactile imaging method of optical coherence tomography (OCT), they want to make a digital image of the auditory canal without having to make a mold. First the ear is optically scanned, and the form is digitized.

For the next step, the group Image-Guided Laser Surgery of the LZH is developing a software which converts the raw image data of the scan to a construction file. Once in the computer, the data can be further processed quickly, and molds do not need to be sent to other sites, and then scanned.

A hard core and a soft covering

Using the digitized data of the individual ear, the partners want to optimize both the function and the wear comfort of the ear mold for the customer, and avoid unpleasant pressure sores. To achieve this, the partners are combining two additive manufacturing processes, spray coating and Laser Transfer Printing (LTP), in order to join two different materials together, and to make a hardness profile within the ear mold.

The Laser Micromachining Group of the LZH is developing the necessary process, and is examining the new materials concerning their suitability, always keeping the criteria of the end users Sennheiser electronic GmbH & Co KG and KIND Hörgeräte GmbH in mind.

Increasing wear comfort and decreasing delivery times

With this innovative process chain of OCT and 3-D printing, not only the manufacturing of the otoplastics is considerably more pleasant for the customers. Also, the headset or the hearing aid would be usable for longer periods of time, it would provide better sound quality, and it would reach the customer at least a day earlier.

About 3D-PolySPRINT

The joint project 3D-PolySPRINT is being coordinated by the Sennheiser electronic GmbH & Co. KG and consists of the companies KIND Hörgeräte GmbH & Co. KG, OptoMedical Technologies GmbH, Materialise GmbH, Dreve ProDiMed GmbH, microTEC Gesellschaft für Mikrotechnologie mbH, LPKF Laser & Electronics AG and the LZH.

The work is being funded within the call for proposals “Photonic Process Chains” within the framework of the programs “Photonic Research Germany” and “Material Technologies for Industry and Society (WING)” through the German Federal Ministry of Education and Research, and will be running for three years.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>