Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early countermeasures against ineffective therapies

26.02.2018

In the joint PANTHER project, Fraunhofer MEVIS is working on using CT images more effectively in tumor therapy follow-ups.

What effect does a particular cancer medicine or radiation therapy have on patients? To find out, physicians use CT images to determine whether a tumor’s size changes during the course of treatment. In the PANTHER project, a joint team of experts aims at gaining further valuable information from these images.


Radiomics discovers relationships between image features and clinical data. The “heatmap” groups patients with similar features and represents them in areas of the same color.

© Photo Fraunhofer MEVIS

In the future, doctors will be able to find out at an early stage whether a cancer treatment is effective or should be changed. The Fraunhofer Institute for Medical Image Computing MEVIS, with its branches in Bremen and Lübeck, is an essential project partner. This spring, the project team will present the interim results from the first project period.

Physicians monitor the course of tumor therapy by observing the general condition of their patients, analyzing lab values from blood tests, and taking regular CT images of the affected organs. Until now, doctors have only used the images to monitor tumor size development. Has the tumor shrunk as a result of radiation or chemotherapy or has it grown further, making a change in therapy, such as choosing an alternative medication, seem reasonable?

This is where the joint PANTHER project comes into play. “So far, size development of a tumor is the most important criterion in evaluating CT images,” says Fraunhofer MEVIS computer scientist Jan Hendrik Moltz.

“Yet, there is so much more information hidden in these images that has barely been used.” In addition to size progression, the images also show how and to which degree the shape of the ulcer has changed. They can give details about the texture and nature of the tumor, whether it consists of different types of tissues, and whether its composition changes during the course of therapy.

Much of this information is invisible to the naked eye, which causes difficulties. “To be able to recognize and in particular quantify these features, physicians need computer assistance,” says Moltz. “This is precisely the goal of PANTHER.”

Since October 2016, the Federal Ministry of Education and Research has sponsored the joint “Patient-oriented oncological therapy assistance” project with an overall funding around 2.8 million euro. In addition to Fraunhofer MEVIS, further participants include the Medical Center of the University of Munich, MeVis BreastCare GmbH & Co.KG, as well as project coordinator Siemens Healthcare GmbH.

In the first phase, radiologists of the Medical Center of the University of Munich compiled large amounts of CT image data of colon cancer and lymphoma patients. The clinicians segmented relevant structures in the images using a web tool, making the size and shape of the tumors and organs in the images recognizable and measurable. At a later stage, an automatic algorithm will perform the segmentation instead.

The oncologists in Munich provided extensive data material on patients’ response to a therapy and how their blood values changed during the course of treatment. Experts want to align particular features of the CT images with the data, such as changes in the shape and texture of the tumor during therapy. Comprehensive statistical analyses will reveal possible reliable correlations between image and therapy data. “Ideally, the CT images would help assess at an early stage whether or not a particular therapy is successful,” says Julian Holch, an oncologist at the Medical Center of the University of Munich.

Soon, the PANTHER team will be preparing for a mid-term review. “We have already collected a large share of the data and developed essential parts of the software, for example, for the automatic segmentation of the spleen,” explains Moltz. “We have also identified features in the CT images that we wish to evaluate with statistical analyses.” For patients with colon cancer, change in liver metastases could be a possible indicator of therapy success. For lymphoma patients, changes in spleen shape could deliver clues concerning the effect of therapy.

“By the end of the project in 2019, the potential benefit of our approach for medicine should be clear,” says Jan Hendrik Moltz. “The next step would be the development of a computer-based expert system that supports doctors in choosing the best therapy.”

The joint project is an example of a new approach in medicine called radiomics, a mix of radiology and genomics. Elaborate algorithms could help extract additional information from radiological images and correlate them with data from clinics and labs. The goal is to develop therapies that target specific patients or cancer types. “Radiomics has the potential of making medicine more efficient and thus produce benefits for the patients,” says Horst Hahn, one of Fraunhofer MEVIS’ directors. “This way, we can gain profound analysis of diseases that can help figure out which patients will respond to what therapy methods.”

Weitere Informationen:

https://www.mevis.fraunhofer.de/en/press-and-scicom/press-release/2018/early-cou...

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

Further reports about: Bildgestützte Medizin CT CT images colon cancer lymphoma lymphoma patients

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>