Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnosing prostate cancer quickly and safely

28.10.2014

Distinguishing between benign and malignant prostate tissue is difficult.

A new device facilitates the diagnosis for doctors: Through a visual analysis, they can reliably determine if they are dealing with carcinoma within a minuteand-a-half. Fraunhofer researchers will be presenting the prototype at the COMPAMED trade fair in Düsseldorf from November 12th to 14th.


In just one and a half minutes, this prototype of a diagnostic device determines whether the prostate tissue sample is benign or malignant. © Fraunhofer IKTS


The software indicates that the tissue is cancer free. © Fraunhofer IKTS

Is it carcinoma of the prostate – or a benign tissue change?

To find this out, doctors take a biopsy of prostate tissue from the patient. In doing so, they insert a small needle into the prostate, using ultrasound images to assist with navigation. From the sample taken in this way, laboratory employees fabricate wafer-thin tissue sections – a laborious job that takes at least a day. Then, the tissue sections are forwarded to a pathologist, who examines them under the microscope. Even for experienced physicians, though, it is often diffi cult to distinguish between benign and malignant tissue.

Analysis at your fingertips

In the future, this research will be easier, faster and more precise − with an optical diagnostic device that researchers have developed at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden. A prototype is currently available. "The physician places the removed tissue sample on a base plate, slides it into the machine, presses a button – and within one and a half minutes, receives a reliable indication of whether the tissue in the sample is benign or malignant," describes Dr. Jörg Opitz, scientist at IKTS.

Since the sample does not require a long preparation time and can be pushed directly into the device and analyzed after it has been taken, the patient does not have to wait for days after the biopsy in order to know the outcome. The doctor receives the results immediately and can talk with the patient much sooner about the next steps to take.

Light stimulates the body’s own fluorescence

A further advantage is the reliability of the examinations. "The analyses are based on the auto-fl uorescence that human tissue emits", says Opitz. There are fluorophores in every human body. These molecules are illuminated for a very short time when certain light falls on them. If the doctor sets the removed tissue in the device, starts the measurement, emits a dosage of laser pulse and excites the fl uorophores, then the laser pulse stimulates the fl uorescent molecules in the tissue to release light.

The way in which this fluorescence radiation decreases differs between benign and malignant tissue. The scientists have been able to determine a clear threshold for this different behavior: If the value of the tissue sample exceeds the threshold value, carcinoma is present. Thus, the doctors obtain a clear and unambiguous prognosis. The analysis proceeds automatically. The device shows the physician if the collected sample contains cancer tissue like the colors of a traffic signal.

Each tissue has its own threshold

Currently, the device can only be used for prostate cancer, since the threshold value of the unit only applies to this tissue. Each tissue type has a fi xed value, but they are different. Prostate tissue has a different value than does tissue from the chest or oral cavity. The researchers’ goal is to determine the threshold values for other tissue types and to integrate them into the analysis software of the device. Then, the doctors will be able to examine different samples with the device: They would only need to enter the appropriate tissue type from a drop-down menu.

The optical diagnostic device has already completed its first two clinical studies, and the third study is currently underway. The scientists will be presenting the 53 x 60 x 43 centimeter prototype at the COMPAMED trade fair in Düsseldorf from November 12 to 14 (Hall 8a, Booth K38).

Contact

Dr. rer. nat. Jörg Opitz
Fraunhofer Institute for Ceramic Technologies and Systems, Branch Materials Diagnostics IKTS-MD
Phone +49 351 88815-516
joerg.opitz@ikts.fraunhofer.de

Weitere Informationen:

http://www.ikts.fraunhofer.de

Katrin Schwarz | Fraunhofer-Institut

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>