Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnosing prostate cancer quickly and safely

28.10.2014

Distinguishing between benign and malignant prostate tissue is difficult.

A new device facilitates the diagnosis for doctors: Through a visual analysis, they can reliably determine if they are dealing with carcinoma within a minuteand-a-half. Fraunhofer researchers will be presenting the prototype at the COMPAMED trade fair in Düsseldorf from November 12th to 14th.


In just one and a half minutes, this prototype of a diagnostic device determines whether the prostate tissue sample is benign or malignant. © Fraunhofer IKTS


The software indicates that the tissue is cancer free. © Fraunhofer IKTS

Is it carcinoma of the prostate – or a benign tissue change?

To find this out, doctors take a biopsy of prostate tissue from the patient. In doing so, they insert a small needle into the prostate, using ultrasound images to assist with navigation. From the sample taken in this way, laboratory employees fabricate wafer-thin tissue sections – a laborious job that takes at least a day. Then, the tissue sections are forwarded to a pathologist, who examines them under the microscope. Even for experienced physicians, though, it is often diffi cult to distinguish between benign and malignant tissue.

Analysis at your fingertips

In the future, this research will be easier, faster and more precise − with an optical diagnostic device that researchers have developed at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden. A prototype is currently available. "The physician places the removed tissue sample on a base plate, slides it into the machine, presses a button – and within one and a half minutes, receives a reliable indication of whether the tissue in the sample is benign or malignant," describes Dr. Jörg Opitz, scientist at IKTS.

Since the sample does not require a long preparation time and can be pushed directly into the device and analyzed after it has been taken, the patient does not have to wait for days after the biopsy in order to know the outcome. The doctor receives the results immediately and can talk with the patient much sooner about the next steps to take.

Light stimulates the body’s own fluorescence

A further advantage is the reliability of the examinations. "The analyses are based on the auto-fl uorescence that human tissue emits", says Opitz. There are fluorophores in every human body. These molecules are illuminated for a very short time when certain light falls on them. If the doctor sets the removed tissue in the device, starts the measurement, emits a dosage of laser pulse and excites the fl uorophores, then the laser pulse stimulates the fl uorescent molecules in the tissue to release light.

The way in which this fluorescence radiation decreases differs between benign and malignant tissue. The scientists have been able to determine a clear threshold for this different behavior: If the value of the tissue sample exceeds the threshold value, carcinoma is present. Thus, the doctors obtain a clear and unambiguous prognosis. The analysis proceeds automatically. The device shows the physician if the collected sample contains cancer tissue like the colors of a traffic signal.

Each tissue has its own threshold

Currently, the device can only be used for prostate cancer, since the threshold value of the unit only applies to this tissue. Each tissue type has a fi xed value, but they are different. Prostate tissue has a different value than does tissue from the chest or oral cavity. The researchers’ goal is to determine the threshold values for other tissue types and to integrate them into the analysis software of the device. Then, the doctors will be able to examine different samples with the device: They would only need to enter the appropriate tissue type from a drop-down menu.

The optical diagnostic device has already completed its first two clinical studies, and the third study is currently underway. The scientists will be presenting the 53 x 60 x 43 centimeter prototype at the COMPAMED trade fair in Düsseldorf from November 12 to 14 (Hall 8a, Booth K38).

Contact

Dr. rer. nat. Jörg Opitz
Fraunhofer Institute for Ceramic Technologies and Systems, Branch Materials Diagnostics IKTS-MD
Phone +49 351 88815-516
joerg.opitz@ikts.fraunhofer.de

Weitere Informationen:

http://www.ikts.fraunhofer.de

Katrin Schwarz | Fraunhofer-Institut

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>