Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Developing radically new technologies for X-ray systems


Siemens is investigating entirely new concepts for X-ray systems. The aim is to achieve a radical increase in imaging resolution and to enable phase-contrast X-ray imaging. This entirely new technique helps, for instance, in the identification of tumors.

Moreover, examinations involving cardiovascular diseases can be carried out without contrast agents. Nearly one out of ten patients suffer from allergic reactions to these substances. A multi-year R&D project, which is scheduled to run until 2017, brings together experts from Siemens Healthcare und Corporate Technology and includes external partners. An article on this subject is now available on the online magazine "Pictures of the Future".

Instead of emitting electrons from 2,000-degree Celsius filaments as usual, the project's researchers are using a ring-shaped "cold cathode" of nanostructured carbon that operates at a high voltage and at room temperature. As is the case today, electrons are accelerated and collide with a target.

This target, however, is not the usual tungsten anode, which only converts about one percent of incoming energy into X-rays. The new conepts foresees of a jet of liquid metal as the new target. The metal consists of 95 percent lithium and 5 percent heavy elements such as bismuth or lanthanum. The latter produces short wavelength X-rays, the former acts as a coolant.

The energy of electrons leaving the liquid-metal-jet anode can potentially be reclaimed. The result is that the X-ray tube requires less than half the electricity and cooling of previous devices.

20-fold higher imaging resolution

The new tube can achieve a much higher energy density at the target. At the same light intensity, the focus of the new X-ray source is 400 times smaller than in conventional X-ray tubes, which results in a 20-fold higher imaging resolution. That, in turn, is the prerequisite for an entirely new imaging technique: phase-contrast X-ray imaging.

Whereas conventional radiography simply records whether X-rays penetrate certain tissue or not, phase-contrast imaging measures the influence of the tissue on the phase of the X-ray beam. This phase shift varies depending on the refractive power of the tissue through which the radiation passes. This approach would make it possible to distinguish different soft tissues, in particular fat from water or iron levels in blood.

This is essential, for instance, in order to easily identify a tumor in an early stage. Blood vessels could be made visible in this way without contrast agents. To be able to measure these phase shifts, Siemens is using for the first time a wavefront sensor of the kind used in optics and astronomy for X-ray light.

Siemens' next-generation X-ray systems would not only be very efficient to operate and would offer better performance, but would be ideal for minimally invasive surgery. Surgeons performing procedures inside the body via catheter would use X-ray imaging to know exactly where the catheter was located. If the catheter were navigated using magnetic fields, conventional X-ray tubes would not be used because they are sensitive to magnetic fields. The new systems would not have this drawback, but would be able to provide images that would be more useful diagnostically.

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>