Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing radically new technologies for X-ray systems

04.02.2015

Siemens is investigating entirely new concepts for X-ray systems. The aim is to achieve a radical increase in imaging resolution and to enable phase-contrast X-ray imaging. This entirely new technique helps, for instance, in the identification of tumors.

Moreover, examinations involving cardiovascular diseases can be carried out without contrast agents. Nearly one out of ten patients suffer from allergic reactions to these substances. A multi-year R&D project, which is scheduled to run until 2017, brings together experts from Siemens Healthcare und Corporate Technology and includes external partners. An article on this subject is now available on the online magazine "Pictures of the Future".

Instead of emitting electrons from 2,000-degree Celsius filaments as usual, the project's researchers are using a ring-shaped "cold cathode" of nanostructured carbon that operates at a high voltage and at room temperature. As is the case today, electrons are accelerated and collide with a target.

This target, however, is not the usual tungsten anode, which only converts about one percent of incoming energy into X-rays. The new conepts foresees of a jet of liquid metal as the new target. The metal consists of 95 percent lithium and 5 percent heavy elements such as bismuth or lanthanum. The latter produces short wavelength X-rays, the former acts as a coolant.

The energy of electrons leaving the liquid-metal-jet anode can potentially be reclaimed. The result is that the X-ray tube requires less than half the electricity and cooling of previous devices.

20-fold higher imaging resolution

The new tube can achieve a much higher energy density at the target. At the same light intensity, the focus of the new X-ray source is 400 times smaller than in conventional X-ray tubes, which results in a 20-fold higher imaging resolution. That, in turn, is the prerequisite for an entirely new imaging technique: phase-contrast X-ray imaging.

Whereas conventional radiography simply records whether X-rays penetrate certain tissue or not, phase-contrast imaging measures the influence of the tissue on the phase of the X-ray beam. This phase shift varies depending on the refractive power of the tissue through which the radiation passes. This approach would make it possible to distinguish different soft tissues, in particular fat from water or iron levels in blood.

This is essential, for instance, in order to easily identify a tumor in an early stage. Blood vessels could be made visible in this way without contrast agents. To be able to measure these phase shifts, Siemens is using for the first time a wavefront sensor of the kind used in optics and astronomy for X-ray light.

Siemens' next-generation X-ray systems would not only be very efficient to operate and would offer better performance, but would be ideal for minimally invasive surgery. Surgeons performing procedures inside the body via catheter would use X-ray imaging to know exactly where the catheter was located. If the catheter were navigated using magnetic fields, conventional X-ray tubes would not be used because they are sensitive to magnetic fields. The new systems would not have this drawback, but would be able to provide images that would be more useful diagnostically.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>