Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting skin cancer quickly

04.05.2015

Melanoma is aggressive and life-threatening. If it is not detected early, the prospects of recovery drop. Screening is complicated, though. Together with several project partners, Fraunhofer researchers have developed an assistance system that helps dermatologists with diagnosis.

According to the German Cancer Society, around 200,000 people contract skin cancer every year. Melanoma is particularly dangerous. Once it has penetrated deeper layers of skin, the prospects of recovery drop to less than ten percent.


The Dermascanner scans the surface of a patient’s skin from different positions.

© Dirk Mahler/Fraunhofer IFF

Routine screening is the only way to detect critical skin changes at an early stage. A doctor uses a dermatoscope – a magnifier that peers into deeper layers of skin – to examine abnormal moles, called melanocytic nevus by experts, for features such as size, texture and edges and to observe whether they change over time. Since most people have many moles, the procedure is time consuming.

What is more, keeping an eye on changes such as the growth of individual moles is difficult since a doctor often cannot identify them with absolute certainty during the next exam.

Full body scanner helps diagnose skin conditions

At the initiative of and together with the University Clinic for Dermatology and Venerology in Magdeburg as well as the partners Dornheim Medical Images GmbH and Hasomed GmbH, researchers at the Fraunhofer Institute for Factory Operation and Automation IFF have developed a full body dermatological scanner intended to help doctors diagnose skin conditions in the future.

“The scanner delivers standard data for the evaluation of skin. At the same time, it improves documentation of the development every single conspicuous mole,” says Dr. Christian Teutsch from the Fraunhofer IFF. When the exam starts, the surface of the patient’s skin is scanned from different positions and broken down into approximately one hundred individual scans. Such image documentation already exists.

“The crucial point, however, is that the actual size and changes in growth cannot be clearly discerned solely on the bases of scans,” explains Teutsch.

That is why the Dermascanner generates additional scanned 3D data, which are fused with the 2D scans, thus assigning a scale to every single pixel in the image. The experts are integrating several 3D sensors in the scanner so that this functions. The sensors and cameras are calibrated so that their location in space is known precisely.

The beams of light from the camera striking the mole can be assigned a precise 3D distance. Even when different scans have not been taken from the exact same distance – which is hardly likely – the doctor can apply the scale to determine the actual proportions precisely. The scanned data and scans are fed into analysis software and analyzed and presorted by automatic classification. The software compares any existing earlier scans of development with current images.

“Our technology detects growth upwards of half a millimeter,” says Teutsch. Another advantage is that the scanned 3D data enables a doctor to clearly locate every single mole again.

“A single patient frequently has several hundred moles,” says Prof. Harald Gollnick, Director of the University Clinic for Dermatology and Venerology. When such a high risk patient visits the doctor again after a while, common methods of examination cannot discern whether the location and size moles on skin covered with pigmentation spots are still identical. According to Gollnick, “The new full body, early skin cancer detection system makes a nearly standard evaluation of skin condition and changes possible for the first time.”

“The diagnosis itself is and remains the doctor’s purview,” stresses Teutsch. Doctors have both the scan results and the scans with an additional 3D depth map, which records the distance of the individual pixels in the scan, at their disposal to make a diagnosis. Since minimal changes of an abnormal mole can already be significant, the scanned and image data have to be comparable at any time and also among different equipment.

That is why another important aspect of development was the standardization of the Dermascanner – another of the Fraunhofer IFF’s specializations. “We calibrate every relevant element such as light sources and convert the scans into a standard color space,” explains Teutsch. This assures that effects such as fading luminosity over time do not affect the results.

The Dermascanner is just about ready to be marketed. The first pilot systems have been built. What is more, the project team was recently awarded the 2014 Hugo Junkers Award for Research and Innovation in Saxony-Anhalt for its development by the Ministry of Higher Education, Research and Economic Affairs (www.hugo-junkers-preis.de). Now, investors have to be found in order to mass produce the skin scanner.

Weitere Informationen:

http://www.fraunhofer.de/en/press/research-news/2015/may/detecting-skin-cancer-q...

Britta Widmann | Fraunhofer-Gesellschaft

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>