Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Detecting skin cancer quickly


Melanoma is aggressive and life-threatening. If it is not detected early, the prospects of recovery drop. Screening is complicated, though. Together with several project partners, Fraunhofer researchers have developed an assistance system that helps dermatologists with diagnosis.

According to the German Cancer Society, around 200,000 people contract skin cancer every year. Melanoma is particularly dangerous. Once it has penetrated deeper layers of skin, the prospects of recovery drop to less than ten percent.

The Dermascanner scans the surface of a patient’s skin from different positions.

© Dirk Mahler/Fraunhofer IFF

Routine screening is the only way to detect critical skin changes at an early stage. A doctor uses a dermatoscope – a magnifier that peers into deeper layers of skin – to examine abnormal moles, called melanocytic nevus by experts, for features such as size, texture and edges and to observe whether they change over time. Since most people have many moles, the procedure is time consuming.

What is more, keeping an eye on changes such as the growth of individual moles is difficult since a doctor often cannot identify them with absolute certainty during the next exam.

Full body scanner helps diagnose skin conditions

At the initiative of and together with the University Clinic for Dermatology and Venerology in Magdeburg as well as the partners Dornheim Medical Images GmbH and Hasomed GmbH, researchers at the Fraunhofer Institute for Factory Operation and Automation IFF have developed a full body dermatological scanner intended to help doctors diagnose skin conditions in the future.

“The scanner delivers standard data for the evaluation of skin. At the same time, it improves documentation of the development every single conspicuous mole,” says Dr. Christian Teutsch from the Fraunhofer IFF. When the exam starts, the surface of the patient’s skin is scanned from different positions and broken down into approximately one hundred individual scans. Such image documentation already exists.

“The crucial point, however, is that the actual size and changes in growth cannot be clearly discerned solely on the bases of scans,” explains Teutsch.

That is why the Dermascanner generates additional scanned 3D data, which are fused with the 2D scans, thus assigning a scale to every single pixel in the image. The experts are integrating several 3D sensors in the scanner so that this functions. The sensors and cameras are calibrated so that their location in space is known precisely.

The beams of light from the camera striking the mole can be assigned a precise 3D distance. Even when different scans have not been taken from the exact same distance – which is hardly likely – the doctor can apply the scale to determine the actual proportions precisely. The scanned data and scans are fed into analysis software and analyzed and presorted by automatic classification. The software compares any existing earlier scans of development with current images.

“Our technology detects growth upwards of half a millimeter,” says Teutsch. Another advantage is that the scanned 3D data enables a doctor to clearly locate every single mole again.

“A single patient frequently has several hundred moles,” says Prof. Harald Gollnick, Director of the University Clinic for Dermatology and Venerology. When such a high risk patient visits the doctor again after a while, common methods of examination cannot discern whether the location and size moles on skin covered with pigmentation spots are still identical. According to Gollnick, “The new full body, early skin cancer detection system makes a nearly standard evaluation of skin condition and changes possible for the first time.”

“The diagnosis itself is and remains the doctor’s purview,” stresses Teutsch. Doctors have both the scan results and the scans with an additional 3D depth map, which records the distance of the individual pixels in the scan, at their disposal to make a diagnosis. Since minimal changes of an abnormal mole can already be significant, the scanned and image data have to be comparable at any time and also among different equipment.

That is why another important aspect of development was the standardization of the Dermascanner – another of the Fraunhofer IFF’s specializations. “We calibrate every relevant element such as light sources and convert the scans into a standard color space,” explains Teutsch. This assures that effects such as fading luminosity over time do not affect the results.

The Dermascanner is just about ready to be marketed. The first pilot systems have been built. What is more, the project team was recently awarded the 2014 Hugo Junkers Award for Research and Innovation in Saxony-Anhalt for its development by the Ministry of Higher Education, Research and Economic Affairs ( Now, investors have to be found in order to mass produce the skin scanner.

Weitere Informationen:

Britta Widmann | Fraunhofer-Gesellschaft

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>