Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bern Software Analyses Brain Tumours at Lightning Speed

12.11.2014

Faster than the doctor, but equally meticulous and free of charge: the Bern computer rogram BRaTumIA for the recognition of malignant brain tumours is proving to be an international hit.

The fully automatic computer program requires a maximum of 10 minutes per patient for the analysis of the magnetic resonance image of a brain tumour. A doctor requires between 30 and 60 minutes, however.


A screenshot of BraTumIA in action.

(Mauricio Reyes)

As the first software worldwide to do so, BRaTumIA also examines the tumour on a three dimensional basis without the need for human support, a task a doctor would take a far longer time to complete, and with a higher risk of error. As a result, manual daily hospital measurements are now only
occurring on two levels.

The program was developed and clinically tested by a team of doctors and engineers from the Bern University Hospital and the Institute for Surgical Technology and Biomechanics (ISTB) at the University of Bern, under the leadership of professors Roland Wiest (University Institute for Neuroradiology) and Mauricio Reyes (ISTB).

Analysis Down to the Tiniest Detail
BraTumIA provides Neuroradiologists with the optimum support in their analysis. The software compares the patient's MRI images with all of the previously gathered statistical data and determines the tissue structures of the malignant tumour right down to the tiniest detail. Prof. Roland Wiest, Neuroradiologist and Leader of the Support Centre of Advanced Neuroimaging at the Bern University Hospital:

"The precision segmenting of the tumour tissue is enabling us to use the image information to optimise the treatment on an ever more precise basis. This is hugely important, as new treatment strategies for gliomas - malignant tumours - can receive exact information on the growth data
concerning the tumours."

Data Mining: Learning Software
It is in this context that BraTumIA has joined the medical data mining trend. Similar to conventional data mining, in which data regarding customers' buying and reading habits are gathered in the internet, the software consistently improves through the constant gathering of new statistical data. BraTumIA is currently the focus of considerable international attention: the Washington Post used the software at the beginning of October to demonstrate data mining in the analytical medical sector - in international comparisons, the software has consistently achieved a top three position in terms of its measuring accuracy.

The possibility of being able to continuously 'feed' the software with new statistical data is decisive for future brain tumour patients: when doctors analyse MRI images manually, analytical errors are theoretically possible in several different directions. The software, however, only makes analytical errors in the same direction, if at all. Doctors can check any such errors on a quick and targeted basis and reduce them to the minimum.

Soon to be Available for MS and Strokes
The intensive collaboration of the engineers and doctors in the development of BraTumIA could soon be benefitting to patients suffering from multiple sclerosis (MS) and those who have suffered stroke. The research group is currently working at full speed on two further versions of the software.

With MS patients, BraTumIA is set to provide precise analyses of inflamed brain tissue in the white brain matter (plaques). With stroke patients the software will serve the purpose of risk analysis: In the immediate aftermath of a stroke it recognises which parts of the brain are likely to remain damaged subsequent to treatment. In this task, BraTumIA also makes use of clinically gathered data.

The research on the computer supported analysis using BraTumIA at the Bern University Hospital and the University of Bern is being supported by the European Union, the Swiss National Fund and the Bern and Swiss Cancer League.


Weitere Informationen:

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0096873
https://hal.inria.fr/hal-00935640/PDF/brats_preprint.pdf
http://www.washingtonpost.com/blogs/innovations/wp/2014/10/01/the-incredible-potential-and-dangers-of-data-mining-health-records/

Martina Leser | Universitätsspital Bern

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>