Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time the interior of cells present in a disease called Idiopathic Pulmonary Fibrosis (IPF), a chronic age-related lung disease killing 0.5 Million people each year worldwide.


GaN LED chip with optobiomedical chemical sensors

Hutomo Suryo Wasisto/TU Braunschweig

The new microscope will be affordable and ubiquitously available. In science, it is expected to lead to fundamental breakthroughs in virtually every field of research that currently makes use of optical microscopes – particularly in the medical field.

Making microscopic images will be easy and accessible to researchers who operate out in the field, away from scientific infrastructures and they will be affordable to researchers in developing countries. In the future, these microscopes-in-a-chip could also be integrated into consumer electronic products, being as common as a camera is in a smartphone today.
Background

Today, optical microscopes are limited in resolution by physical laws related to the wavelength of light, around half a thousandth of a millimetre. Single proteins, DNA molecules or the interior of living cells are much smaller and cannot be directly observed with conventional optical microscopes.

At the moment, only indirect observation - that means interpretation of measured data - can be made, for example in complex, expensive and bulky electron microscopes. These devices, however, are not suitable for the observation of delicate living tissues.
The Ambitious Project Objectives

The objective of the ChipScope project is to develop a new kind of optical microscope allowing to see the infinitely small. During the project, very small LEDs of 50 nanometers, this is 1000 times smaller than the diameter of a human hair, will be developed and used as light sources for the new microscope which will be integrated on a chip.

The fundamental difference with conventional optical microscopy will be that the illumination is made by extremely small individual light sources instead of a wide illumination field and tiny detectors in the camera. This allows super-resolution optical microscopy, which could be used to investigate extremely small structures such as viruses, DNA or living cells, in real time.
A Highly Interdisciplinary Project Team

The ChipScope project is running from January2017 to December 2020. The project team includes SMEs, universities and research organisations under the leadership of the University of Barcelona. Other partners are the Technical University of Braunschweig in Germany, the University Tor Vergata in Rome, the company Expert Ymaging in Barcelona, the AIT Austrian Institute of Technology, the Medical University of Vienna and the FSRM – the Swiss Foundation for Research in Microtechnology.

Contact

Dr. Thorben Dammeyer
LENA-Geschäftsführer
Technische Universität Braunschweig
Institut für Halbleitertechnik
Hans Sommer Straße 66
38106 Braunschweig
Tel.: 0531 391-3801
t.dammeyer@tu-braunschweig.de
www.tu-braunschweig.de/mib/lena

Weitere Informationen:

https://magazin.tu-braunschweig.de/pi-post/entwicklung-miniaturisierter-lichtmik...
https://www.tu-braunschweig.de/mib/lena
https://www.tu-braunschweig.de/mib/lena/quanomet
https://www.tu-braunschweig.de/iht

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>