Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D printed heart could reduce heart surgeries in children

05.12.2014

Doctors can perfect procedures on a model before the intervention

New 3D printed heart technology could reduce the number of heart surgeries in children with congenital heart disease, according to Dr Peter Verschueren who spoke on the topic today at EuroEcho-Imaging 2014.1 Dr Verschueren brought 3D printed models of the heart to his lecture including models used to plan real cases in patients.

EuroEcho-Imaging is the annual meeting of the European Association of Cardiovascular Imaging (EACVI), a branch of the European Society of Cardiology (ESC), and is held 3-6 December in Vienna, Austria.

Dr Verschueren said: "Children with congenital heart disease often need up to four open heart surgeries at different times of life. The 3D printed copy of the heart could reduce this to one or two because doctors can choose and practice the best interventional approach and device beforehand. This will avoid children spending months in intensive care."

Three dimensional (3D) printing uses a machine to print objects layer by layer. Instead of ink the printer uses plastics, metals and other materials. The technology was first used in the automotive and aerospace industries to make prototypes. Dr Verschueren said: "You can make complex, unique things, which is useful in medicine because each patient is different."

3D printing entered the medical field around two decades ago in craniomaxillofacial and orthopaedic surgery. 3D reconstructions of a patient's bone were made from a computed tomography (CT) scan. Today the technology is also used to make hearing aids. Printing 3D hearts was made possible with flexible materials for printing and fast scanners that can trace the beating heart. A CT or magnetic resonance imaging (MRI) scan is used to print muscles and valves which can be beating or static.

The models are used to plan surgeries in children with congenital heart diseases such as double outlet right ventricle or Tetralogy of Fallot. Dr Verschueren said: "Until recently, doctors would look at an image and then try to visualise the heart in 3D. Now they can use a 3D copy of an individual patient's heart to plan the procedure in detail before they go into the operating theatre."

He added: "This is still a relatively new technology but there is increasing interest in using 3D printed models to plan heart valve interventions in adults. This could include complex bicuspid aortic valve cases that doctors want to treat with transcatheter aortic valve implantation (TAVI) and new transcatheter interventions for repairing or replacing the mitral and tricuspid valves."

Today at EuroEcho-Imaging, biomedical research engineer Helen O' Grady from Galway, Ireland, presents a novel 3D printed model of tricuspid regurgitation she developed to test a new device and train interventionists in the implantation procedure.2 Ms O'Grady used CT scans of tricuspid regurgitation patients to build a 3D software model which she then used for 3D printing of a right heart and tricuspid valve annulus model..

She took the additional step of using the 3D printed model to mould a more flexible model that is compatible with echocardiography and fluoroscopy. It is housed in a cardiac anatomy rig that replicates the anatomical conditions of the heart in the body as well as the leaflet motion of the valve. Doctors can use the model to practice implantation of the device on a patient's exact anatomy before the procedure.

Ms O'Grady, said: "There is a variation in normal anatomies and more so in diseased anatomies such as tricuspid regurgitation. Being able to practice on the model allows for better surgical planning and doctors can optimise the interventional procedure pre-operatively. Cardiologists, surgeons and physicians say there's nothing like having a tangible model in your hands as it gives such invaluable insight into the patient anatomy involved."

She added: "3D models can be used to discuss the intervention with the medical team, patients and, in the case of congenital heart defects, with parents. It helps everyone affected to better understand what the procedure will involve."

Professor Patrizio Lancellotti, EACVI President, said: "3D imaging is a main theme of EuroEcho-Imaging this year and 3D printing of the heart is particularly exciting. It allows us to make a perfect model of a patient's anatomy and decide the optimal device and procedure in advance."

Jacqueline Partarrieu | EurekAlert!
Further information:
http://www.escardio.org

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>