Growing tiny carbon nanotube wires to connect computer chips of the future

Computers and electronic devices of the future will utilise technologies not currently available. An example of such a technology is the use of carbon nanotubes as interconnects for computer chips.

This is now a step closer to reality with some new work from nanotechnology researchers within the Materials Ireland Polymer Research Centre at Trinity College Dublin.

Previous work to develop such junction structure nanotubes used various different methods but this study embraced chemical vapour deposition as it allows in situ patterning of these structures. The researchers, Rory W. Leahy, Emer Lahiff, Andrew I. Minett and Werner J. Blau used a simple method of growing controllable densities of interconnect type multiwall nanotubes with high proportions of Y-junction and multiple junction nanotubes across etched patterns, using a simple catalyst preparation.

Their research work has been released as part of a special edition of the open access journal, AZoJono, and outlines a method for growing ordered arrays of interconnect type multi-walled nanotubes with the ability to fine tune the proportion of junction structures through control of initial conditions and processing parameters such as trench width and reaction temperature.

This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The complete article is available to view on AZoJono at http://www.azonano.com/Details.asp?ArticleID=2036

Media Contact

Ian Birkby EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors