Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite data and digital maps are to protect against wrong-way drivers

23.10.2015

Telematics solution to increase traffic safety

Wrong-way drivers driving against the permitted direction of traffic cause almost 2,000 traffic accidents with approximately 20 fatalities on German motorways every year. Attempts to get to grips with the problem through improved signposting or technical measures have not shown the desired effect or rather have failed due to the costs.


Wrong-way drivers at motorway junctions

(source: UniBwM)

The Institutes for Engineering Geodesy from the University of Stuttgart (IIGS) and for Space Technology and Space Exploitation (ISTA) from the Bundeswehr University Munich as well as the company NavCert are now researching a wrong-way driver alert system in the framework of the project “Ghost Hunter“, that is based on a global navigation satellite system (GNSS).

The main causes for wrong-way driving are, among others, consciously turning round on the motorway as well as driving under the influence of alcohol. Added to this is accidental one-way driving whereby the driver simply loses his or her bearings. Wrong-way driving often begins at motorway junctions or in the area of accesses and exits.

Various measures have already been put in place at these neuralgic points in Germany and also in some other countries to prevent wrong-way driving, for instance stop signs, more easily recognisable signposting, road driving claws, induction loops or wireless sensors.

The comprehensive introduction of these safety measures, however, has failed up to now due to the considerable work and cost expenditure. In order to reduce these costs, technical solutions to the wrong-way driving problem have primarily been researched in recent years.

Yet how is it possible to detect wrong-way driving at an early stage and reliably, make wrong-way drivers efficiently aware of what they are doing and warn endangered road users in the surrounding area? In the project “Ghost Hunter“, that is supported by the German Aerospace Centre resp. the Federal Ministry for the Economy and Energy with funds amounting to around 670,000 Euros, scientists are resorting to a selected research method to solve this problem.

This brings the research fields GNSS (including vehicle navigation and sensor fusion) as well as geo-informatics (incl. digital map systems and map-matching technologies) together in order to develop a wrong-way-driver early detection system. The system to be developed is to determine the position of a vehicle with the help of GNSS and other sensors and compare them with a digital map so that the decision can be made as to whether a wrong-way driver is on the road or not.

For this purpose the ISTA will develop a robust (D)GNSS-based algorithm to record exact vehicle trajectories (movement paths) and a wrong-way-driver detection algorithm. The IIGS will investigate data qualities of digital road maps of various map providers and develop a map-matching tool and integrate it in the wrong-way-driver alert system.

Ultimately the new automatic alert system is to be implemented in the European emergency system eCall that will by law have to be installed from 2018 in all new models of cars and light commercial vehicles. By using these modern scientific technical methods the wrong-way-driver alert system is to be enabled in future to protect against wrong-way drivers on motorways and consequently lead to more road safety and fewer accidents.

Further information:
Professor Volker Schwieger, Dr Martin Metzner, Jinyue Wang, University of Stuttgart, Institute for Engineering Geodesy, Tel. 0711/685-84040, - 84043, - 84060
Email: volker.schwieger@ingeo.uni-stuttgart.de, martin.metzner@ingeo.uni-stuttgart.de,
jinyue.wang@ingeo.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>