Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellite data and digital maps are to protect against wrong-way drivers


Telematics solution to increase traffic safety

Wrong-way drivers driving against the permitted direction of traffic cause almost 2,000 traffic accidents with approximately 20 fatalities on German motorways every year. Attempts to get to grips with the problem through improved signposting or technical measures have not shown the desired effect or rather have failed due to the costs.

Wrong-way drivers at motorway junctions

(source: UniBwM)

The Institutes for Engineering Geodesy from the University of Stuttgart (IIGS) and for Space Technology and Space Exploitation (ISTA) from the Bundeswehr University Munich as well as the company NavCert are now researching a wrong-way driver alert system in the framework of the project “Ghost Hunter“, that is based on a global navigation satellite system (GNSS).

The main causes for wrong-way driving are, among others, consciously turning round on the motorway as well as driving under the influence of alcohol. Added to this is accidental one-way driving whereby the driver simply loses his or her bearings. Wrong-way driving often begins at motorway junctions or in the area of accesses and exits.

Various measures have already been put in place at these neuralgic points in Germany and also in some other countries to prevent wrong-way driving, for instance stop signs, more easily recognisable signposting, road driving claws, induction loops or wireless sensors.

The comprehensive introduction of these safety measures, however, has failed up to now due to the considerable work and cost expenditure. In order to reduce these costs, technical solutions to the wrong-way driving problem have primarily been researched in recent years.

Yet how is it possible to detect wrong-way driving at an early stage and reliably, make wrong-way drivers efficiently aware of what they are doing and warn endangered road users in the surrounding area? In the project “Ghost Hunter“, that is supported by the German Aerospace Centre resp. the Federal Ministry for the Economy and Energy with funds amounting to around 670,000 Euros, scientists are resorting to a selected research method to solve this problem.

This brings the research fields GNSS (including vehicle navigation and sensor fusion) as well as geo-informatics (incl. digital map systems and map-matching technologies) together in order to develop a wrong-way-driver early detection system. The system to be developed is to determine the position of a vehicle with the help of GNSS and other sensors and compare them with a digital map so that the decision can be made as to whether a wrong-way driver is on the road or not.

For this purpose the ISTA will develop a robust (D)GNSS-based algorithm to record exact vehicle trajectories (movement paths) and a wrong-way-driver detection algorithm. The IIGS will investigate data qualities of digital road maps of various map providers and develop a map-matching tool and integrate it in the wrong-way-driver alert system.

Ultimately the new automatic alert system is to be implemented in the European emergency system eCall that will by law have to be installed from 2018 in all new models of cars and light commercial vehicles. By using these modern scientific technical methods the wrong-way-driver alert system is to be enabled in future to protect against wrong-way drivers on motorways and consequently lead to more road safety and fewer accidents.

Further information:
Professor Volker Schwieger, Dr Martin Metzner, Jinyue Wang, University of Stuttgart, Institute for Engineering Geodesy, Tel. 0711/685-84040, - 84043, - 84060

Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at)

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>