Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrating Rapid and Cost-Effective Deployment of Wireless Networks for Real-Time Traffic Data Acquisition

26.07.2001


The Problem

Considerable progress has been made in basic research and software development for modeling traffic flow. However, user-friendly and affordable services which could prevent a car driver from getting stuck in a traffic jam are not yet as effective as they could be.
Dynamic guidance covering the major highways has already been implemented in many European countries. On secondary roads, and especially across major urban areas, car driving during the rush-hour often looks more like blind-flying. At present, navigation with dynamic guidance is not available with an acceptable quality-of-service beyond the highway exits.
The reason: In Europe’s densely populated areas, real-time traffic data is not yet available with sufficient spatial and temporal resolution. The urban network topology is highly complex, thus requiring an enormous number of observation points. Cost estimates based on today‘s sensor and communication technology, do not justify to invest in full coverage for traffic data acquisition.

The Wireless Solution to be demonstrated


Drawing upon sound experience with wide-area data collection (early-warning systems for radioactivity), a new wireless networking technology for real-time traffic data acquisition has been proposed. This approach leads to really compact traffic sensors - hence called autonomous probes.
As these probes can operate for five years with their first set of batteries, there would be practically no service requirement. Due to their small size, these sensors can be fixed anywhere on existing infrastructure (traffic signs, street illumination). The sensor employs optical techniques to evaluate the local traffic condition. Short packages of relevant parameters are transmitted to a base station receiver. The radio link connects up to 60 km in one single hop.


The "Travelling" Pilot Project

We intend to provide temporary installations (3 months) of a fixed network for real-time traffic data acquisition in different regions successively. During the demonstration, typically 100 traffic sensors could be installed in a radius of 60 km around the base station receiver (Note: the base station’s capacity is rated for connecting up to 1000 traffic sensors).
The technical part of the installation of a base station receiver will be accomplished in one single day, the installation of a sensor will require half an hour maximum per site - these estimates exclude any formal requirements (bureaucracy).

Potential Locations

The first installation, envisioned to start end of the year 2002, will be set up in the Rhein/Main region. Sensors will be deployed all over the area, including the cities of Frankfurt, Offenbach, Hanau, Darmstadt, Mainz, Wiesbaden, etc.
Afterwards, we intend to continue with the pilot project in Berlin, Paris, London, Los Angeles (USA), Moscow (CIS) and eventually other cities depending on the encouragement and "open doors" by the respective local authorities.

Partners invited

Our part of the pilot project will be limited to provide the traffic-related raw-data stream in real-time, i.e. we take responsibility from the roll-out of the hardware (sensors and base station) to the administration of the data base server (ODBC). Consequently, we hope to attract partners of the following type:

  • European federal or local authorities, public or private institutions, PPPs etc. with active involvement in regional or urban traffic management
  • R&D institutions, software or consulting firms in order to showcase their products for real-time traffic modeling, traffic control, visualisation (GIS) etc.
  • Service providers or content providers who intend to test the acceptance of their telematics-related services
  • Systems integrators in the wireless or IT business, in order to get first-hand experience with a novel wide-area data acquisition technology

Please contact us immediately, in order to prepare for the current subject: IST, Information Society Technologies, Research, Technology Development and Demonstration under the Fifth Framework Program, Calls for Proposals, 7th Round

_______________________________________________________________


Contact: Volker Genrich (CEO)
Company: Genitron Instruments GmbH
Address: Heerstraße 149,
D-60488 Frankfurt am Main
Phone/fax: +49-69/976 514-0, +49-69-765 327
e-mail: Homepage: www.genitron.de and
www.red-systems.com


| Genitron Instruments

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>