Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrating Rapid and Cost-Effective Deployment of Wireless Networks for Real-Time Traffic Data Acquisition

26.07.2001


The Problem

Considerable progress has been made in basic research and software development for modeling traffic flow. However, user-friendly and affordable services which could prevent a car driver from getting stuck in a traffic jam are not yet as effective as they could be.
Dynamic guidance covering the major highways has already been implemented in many European countries. On secondary roads, and especially across major urban areas, car driving during the rush-hour often looks more like blind-flying. At present, navigation with dynamic guidance is not available with an acceptable quality-of-service beyond the highway exits.
The reason: In Europe’s densely populated areas, real-time traffic data is not yet available with sufficient spatial and temporal resolution. The urban network topology is highly complex, thus requiring an enormous number of observation points. Cost estimates based on today‘s sensor and communication technology, do not justify to invest in full coverage for traffic data acquisition.

The Wireless Solution to be demonstrated


Drawing upon sound experience with wide-area data collection (early-warning systems for radioactivity), a new wireless networking technology for real-time traffic data acquisition has been proposed. This approach leads to really compact traffic sensors - hence called autonomous probes.
As these probes can operate for five years with their first set of batteries, there would be practically no service requirement. Due to their small size, these sensors can be fixed anywhere on existing infrastructure (traffic signs, street illumination). The sensor employs optical techniques to evaluate the local traffic condition. Short packages of relevant parameters are transmitted to a base station receiver. The radio link connects up to 60 km in one single hop.


The "Travelling" Pilot Project

We intend to provide temporary installations (3 months) of a fixed network for real-time traffic data acquisition in different regions successively. During the demonstration, typically 100 traffic sensors could be installed in a radius of 60 km around the base station receiver (Note: the base station’s capacity is rated for connecting up to 1000 traffic sensors).
The technical part of the installation of a base station receiver will be accomplished in one single day, the installation of a sensor will require half an hour maximum per site - these estimates exclude any formal requirements (bureaucracy).

Potential Locations

The first installation, envisioned to start end of the year 2002, will be set up in the Rhein/Main region. Sensors will be deployed all over the area, including the cities of Frankfurt, Offenbach, Hanau, Darmstadt, Mainz, Wiesbaden, etc.
Afterwards, we intend to continue with the pilot project in Berlin, Paris, London, Los Angeles (USA), Moscow (CIS) and eventually other cities depending on the encouragement and "open doors" by the respective local authorities.

Partners invited

Our part of the pilot project will be limited to provide the traffic-related raw-data stream in real-time, i.e. we take responsibility from the roll-out of the hardware (sensors and base station) to the administration of the data base server (ODBC). Consequently, we hope to attract partners of the following type:

  • European federal or local authorities, public or private institutions, PPPs etc. with active involvement in regional or urban traffic management
  • R&D institutions, software or consulting firms in order to showcase their products for real-time traffic modeling, traffic control, visualisation (GIS) etc.
  • Service providers or content providers who intend to test the acceptance of their telematics-related services
  • Systems integrators in the wireless or IT business, in order to get first-hand experience with a novel wide-area data acquisition technology

Please contact us immediately, in order to prepare for the current subject: IST, Information Society Technologies, Research, Technology Development and Demonstration under the Fifth Framework Program, Calls for Proposals, 7th Round

_______________________________________________________________


Contact: Volker Genrich (CEO)
Company: Genitron Instruments GmbH
Address: Heerstraße 149,
D-60488 Frankfurt am Main
Phone/fax: +49-69/976 514-0, +49-69-765 327
e-mail: Homepage: www.genitron.de and
www.red-systems.com


| Genitron Instruments

More articles from Transportation and Logistics:

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Combating traffic congestion with advanced data analytics
17.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>