Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology in ship’s bridges can lead to accidents

13.12.2004


Technological aids designed to prevent accidents at sea sometimes have the opposite effect as a contributory factor in collisions and groundings. In a new dissertation from Linköping University in Sweden it is proposed that cognitive and social aspects should be in focus in the design of conning bridges, rather than technology and components.



Margareta Lützhöft, a cognition scientist with several years of experience as a ship’s officer, traveled with fifteen vessels to study work on the bridge. The findings show that advanced technology represents a barrier to what many ship’s officers feel is their main function. “They feel that they have an electronic filter between themselves and reality,” says Margareta Lützhöft.

When a vessel navigates the open sea or in narrow archipelagoes, information from the vessel and the surroundings is of crucial importance when it comes to function and safety. Today conning bridges are stuffed with technological aids, and the trend is to integrate them more and more. But the result is not always to the advantage of the user. There is a superfluity of information, and it is not always well presented. Advanced automation makes it difficult for mates to understand what is happening in the system and when and how to take over and steer manually.


It is not news that technological complexity causes maritime accidents. A well-known example is the collision between Stockholm and Andrea Doria off the coast of the U.S. in 1956, when both vessels were navigating with the help of radar. But today’s integrated bridge systems add a new dimension to the risk of accidents. A central problem is that ship’s officers find that the technology is more useful when conditions are calm than when they are under stress, which actually is when they should be in greater need of it.

“When time and space are at a premium, the system is not perceived as a help,” says Margareta Lützhöft.

One section of her study treats ferry traffic between Sweden and Finland. Nowhere else in the world is the traffic so intense with such large vessels in such hard-to-navigate waters. This makes navigation very demanding and complex, and often dependent on technological aids. Officers have to maneuver within margins measured in meters and seconds. But technology cannot replace the personal experience of the waters that is passed on from mate to mate, from one generation to the next.

Such detailed knowledge is not stored anywhere outside the minds of seamen.

“Attempts have been made to teach this stuff to computers, but I firmly maintain that it’s impossible,” says Margareta Lützhöft.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>