Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First diesel military motorcycle to hit the road

04.11.2004


A unique technology partnership between Cranfield University and California-based Hayes Diversified Technologies (HDT) has created the world’s first production diesel military motorbike – and the first bike of any kind with a purpose-designed diesel power unit.



An initial order for 522 diesel motorcycles has already been placed by the US Marines. Delivery is due to commence in early 2005. In addition, keen interest is being shown by the US Army, the UK Ministry of Defence and other NATO forces. John Crocker worked alongside project leader Dr Stuart McGuigan of the Engineering Systems Department, Cranfield University at Shrivenham, Oxfordshire to design the diesel power unit.

The challenge was to come up with a low technical risk design that was sufficiently light and powerful, and with an engine speed (RPM) range wide enough to give the level of performance required for use as a tactical vehicle. John said: "The motorcycle also had to meet strict NATO requirements for all armed forces to operate their entire inventory of vehicles and powered equipment on either diesel fuel or aviation grade kerosene. "This capability has major logistic advantages in obviating the need to carry other fuels to battle. And their lower flammability, in comparison with petrol, also greatly reduces fire hazards."


This is a ‘world first’, in that the team was able to design and develop a motorcycle engine powerful enough to be used on the battlefield for reconnaissance, policing and courier duties as well as for on-road and off-road performance.And so powerful is the motorcycle that in September 2004 it set the world’s first land speed record for a diesel fuelled motorcycle.

Fred Hayes, founder of HDT, who was in the saddle at the world famous Bonneville Salt Flats, Utah, said: "The event was marred by rain the previous week and by poor track conditions, which limited the top speeds due to soft, wet salt. The normally aspirated bike was officially timed by the AMA at 85.466mph, against our calculated top speed of 86mph with production gearing. The calculated speed was at sea level (4350ft) on hard pavement. We’re delighted with the result. If we’d had an option for gearing and more track time, we may have broken the 90mph barrier."

The production motorcycle is based on the running gear of a Kawasaki KLR650 petrol-engine trail bike. The engine of the diesel motorcycle is a liquid cooled, single cylinder four- stroke which displaces 584 cm³ and currently produces some 21 kw (28 bhp). It is a double overhead camshaft design, with a four-valve cylinder head. A multi-cylinder engine was rejected as unnecessary because of the increased weight and because diesel engines work less efficiently in small cylinder sizes.

Cranfield University and HDT beat off stiff competition for the US Marines contract, including European manufacturers as well as the well established Harley Davidson that had teamed up with Lockheed. Fred does not rule out that the motorcycle may be made available for the consumer market. "Although the motorcycle is about 20-30% more expensive than a comparative conventional motorcycle, there would be cost savings for riders and environmental benefits in that the diesel motorcycle can do 110 miles per gallon - a little over twice the range of a conventional motorcycle," said Fred.

Ardi Kolah | alfa
Further information:
http://www.cranfield.ac.uk

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>