Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First diesel military motorcycle to hit the road


A unique technology partnership between Cranfield University and California-based Hayes Diversified Technologies (HDT) has created the world’s first production diesel military motorbike – and the first bike of any kind with a purpose-designed diesel power unit.

An initial order for 522 diesel motorcycles has already been placed by the US Marines. Delivery is due to commence in early 2005. In addition, keen interest is being shown by the US Army, the UK Ministry of Defence and other NATO forces. John Crocker worked alongside project leader Dr Stuart McGuigan of the Engineering Systems Department, Cranfield University at Shrivenham, Oxfordshire to design the diesel power unit.

The challenge was to come up with a low technical risk design that was sufficiently light and powerful, and with an engine speed (RPM) range wide enough to give the level of performance required for use as a tactical vehicle. John said: "The motorcycle also had to meet strict NATO requirements for all armed forces to operate their entire inventory of vehicles and powered equipment on either diesel fuel or aviation grade kerosene. "This capability has major logistic advantages in obviating the need to carry other fuels to battle. And their lower flammability, in comparison with petrol, also greatly reduces fire hazards."

This is a ‘world first’, in that the team was able to design and develop a motorcycle engine powerful enough to be used on the battlefield for reconnaissance, policing and courier duties as well as for on-road and off-road performance.And so powerful is the motorcycle that in September 2004 it set the world’s first land speed record for a diesel fuelled motorcycle.

Fred Hayes, founder of HDT, who was in the saddle at the world famous Bonneville Salt Flats, Utah, said: "The event was marred by rain the previous week and by poor track conditions, which limited the top speeds due to soft, wet salt. The normally aspirated bike was officially timed by the AMA at 85.466mph, against our calculated top speed of 86mph with production gearing. The calculated speed was at sea level (4350ft) on hard pavement. We’re delighted with the result. If we’d had an option for gearing and more track time, we may have broken the 90mph barrier."

The production motorcycle is based on the running gear of a Kawasaki KLR650 petrol-engine trail bike. The engine of the diesel motorcycle is a liquid cooled, single cylinder four- stroke which displaces 584 cm³ and currently produces some 21 kw (28 bhp). It is a double overhead camshaft design, with a four-valve cylinder head. A multi-cylinder engine was rejected as unnecessary because of the increased weight and because diesel engines work less efficiently in small cylinder sizes.

Cranfield University and HDT beat off stiff competition for the US Marines contract, including European manufacturers as well as the well established Harley Davidson that had teamed up with Lockheed. Fred does not rule out that the motorcycle may be made available for the consumer market. "Although the motorcycle is about 20-30% more expensive than a comparative conventional motorcycle, there would be cost savings for riders and environmental benefits in that the diesel motorcycle can do 110 miles per gallon - a little over twice the range of a conventional motorcycle," said Fred.

Ardi Kolah | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>