Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First diesel military motorcycle to hit the road

04.11.2004


A unique technology partnership between Cranfield University and California-based Hayes Diversified Technologies (HDT) has created the world’s first production diesel military motorbike – and the first bike of any kind with a purpose-designed diesel power unit.



An initial order for 522 diesel motorcycles has already been placed by the US Marines. Delivery is due to commence in early 2005. In addition, keen interest is being shown by the US Army, the UK Ministry of Defence and other NATO forces. John Crocker worked alongside project leader Dr Stuart McGuigan of the Engineering Systems Department, Cranfield University at Shrivenham, Oxfordshire to design the diesel power unit.

The challenge was to come up with a low technical risk design that was sufficiently light and powerful, and with an engine speed (RPM) range wide enough to give the level of performance required for use as a tactical vehicle. John said: "The motorcycle also had to meet strict NATO requirements for all armed forces to operate their entire inventory of vehicles and powered equipment on either diesel fuel or aviation grade kerosene. "This capability has major logistic advantages in obviating the need to carry other fuels to battle. And their lower flammability, in comparison with petrol, also greatly reduces fire hazards."


This is a ‘world first’, in that the team was able to design and develop a motorcycle engine powerful enough to be used on the battlefield for reconnaissance, policing and courier duties as well as for on-road and off-road performance.And so powerful is the motorcycle that in September 2004 it set the world’s first land speed record for a diesel fuelled motorcycle.

Fred Hayes, founder of HDT, who was in the saddle at the world famous Bonneville Salt Flats, Utah, said: "The event was marred by rain the previous week and by poor track conditions, which limited the top speeds due to soft, wet salt. The normally aspirated bike was officially timed by the AMA at 85.466mph, against our calculated top speed of 86mph with production gearing. The calculated speed was at sea level (4350ft) on hard pavement. We’re delighted with the result. If we’d had an option for gearing and more track time, we may have broken the 90mph barrier."

The production motorcycle is based on the running gear of a Kawasaki KLR650 petrol-engine trail bike. The engine of the diesel motorcycle is a liquid cooled, single cylinder four- stroke which displaces 584 cm³ and currently produces some 21 kw (28 bhp). It is a double overhead camshaft design, with a four-valve cylinder head. A multi-cylinder engine was rejected as unnecessary because of the increased weight and because diesel engines work less efficiently in small cylinder sizes.

Cranfield University and HDT beat off stiff competition for the US Marines contract, including European manufacturers as well as the well established Harley Davidson that had teamed up with Lockheed. Fred does not rule out that the motorcycle may be made available for the consumer market. "Although the motorcycle is about 20-30% more expensive than a comparative conventional motorcycle, there would be cost savings for riders and environmental benefits in that the diesel motorcycle can do 110 miles per gallon - a little over twice the range of a conventional motorcycle," said Fred.

Ardi Kolah | alfa
Further information:
http://www.cranfield.ac.uk

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>