Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror Measures Vortex Drag

09.07.2004


Airplanes generate trailing wake vortices which can be dangerous for following aircraft, especially on takeoff and landing. An onboard laser measuring device scans the air space in front of the plane, recognizes turbulence and will inform the pilot.



The volume of air traffic is constantly rising - many air routes are already overloaded. Frequent delays are encountered when machines are taking off and landing at major airports. The frequency of aircraft cannot be increased because they have to maintain a safety distance of up to six miles (11.1 kilometers). It is to ensure that the following airplane is not endangered by the vortex drag of the machine in front. This across-the-board safety distance is often more generous than required. If the position and the actual extent of the air vortex could be directly measured, the safety distance could be adjusted to the actual circumstances and shortened. Airports could then use their capacity to better effect.

“In the EU project I-Wake we are cooperating with eight teams from four different countries to develop a sensor which can determine whether the air is calm enough for a safe takeoff,” explains Thomas Peschel from the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena. “The optical scanner can recognize any turbulence and in future could deliver rapid and reliable measured results on board commercial aircraft. A prototype is currently being tested on a small Cessna plane.” The measurement principle is relatively simple: A laser sends pulses into the air space in front of the aircraft. The light is scattered on aerosol or dust particles and registered by a detector. As a result of the Doppler effect, the wavelength of the incoming laser pulses is shifted according to whether the airborne particles are moving towards or away from the beam. From the difference relative to the incident wavelength, a software system calculates the strength of air turbulences within fractions of a second.


Core parts of the device are two precision mirrors, measuring 11 by 15 centimeters. One of the challenges which had to be overcome was to scan the air space at a relatively high frequency of around seven times per second. To keep forces of inertia and slight subsequent deformations as low as possible, the mirrors have to be lightweight but stiff. The aluminum plate they were manufactured from was perforated to minimize its mass. The perforations run parallel to the surface on the inside in order not to deteriorate mechanical and optical properties. At the same time, the reverse side of the mirrors were retained as a closed surface in order to provide even more rigidity.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>