Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad driving holds the secret to traffic forecasts

01.07.2004


A traffic simulation system is helping drivers by predicting jams on Germany’s autobahn network up to an hour before they happen. The secret of its success is to take into account the way real drivers - and their cars - behave. When engineers model the way road traffic flows they break the traffic down into three categories: freely flowing, jammed, and an intermediate state called synchronised flow in which dense traffic moves in unison, like marchers moving in step.

But this synchronised flow is unstable. One car pulling into another lane and forcing the driver behind to brake hard is enough to start traffic bunching up. This can quickly develop into a jam that propagates backwards through the traffic like a wave. Failure to predict this "pinch effect" has stymied past attempts to model traffic flow.

Now Michael Schreckenberg and colleagues at the University of Duisburg-Essen in Germany have developed a computer model that successfully reproduces the pinch effect. "It is the first model to reproduce all known traffic states," says team member Robert Barlovic. The team’s trick is to be realistic about driver behaviour. "Real drivers tend to hinder each other when doing things like changing lanes. All this has to be taken into account," says Schreckenberg. And where previous models have simplified the way cars move- by assuming they can stop immediately without slowing down first, for example- the new model is more sophisticated.



Schreckenberg’s computer model divides the road into a regular grid, with one line of cells representing each lane on a highway. Cells in the grid are marked as either containing a vehicle or empty. The number of empty cells between the virtual vehicles depends on the way the drivers are behaving. Accuracy not seen before has been achieved by modelling two behaviours, says Schreckenberg. These are dubbed "aggressive" behaviour, in which drivers either get too close to the car in front and have to brake, or in which they change lanes too quickly, forcing others to brake. The second behaviour is "defensive", in which they drive at a generally safe distance.

As the model runs, it moves vehicles according to rules that embody realistic rates of acceleration and deceleration. No infinite decelerations are allowed, for instance. The result is a software model that combines realistic driver behaviour with realistic physics.

The model is already being used to forecast traffic on the autobahn network around the city of Cologne, based on traffic data gathered in real time from sensors buried in the road. Its forecasts, which predict conditions up to an hour ahead, are displayed on the web at www.autobahn.nrw.de. More than 90 per cent of time, it correctly predicts traffic density.

But the website has already become a victim of its own success, admits Schreckenberg. Some of the 300,000 people a day who are visiting the site are replanning their journeys on the basis of its forecasts, and this is beginning to make the forecasts themselves less accurate. And soon it could get even worse when the website becomes available on 3G cellphones, he says.

So the researchers are now trying to adjust the way the traffic information is provided to drivers to take this destructive effect into account. One idea, says Schreckenberg, might actually be to provide less complete traffic information to encourage drivers to adopt more varied strategies for evading congestion, so they do not all flock to the same exits.

Justin Mullins | alfa
Further information:
http://www.uni-duisburg-essen.de

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>