Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Green Technology Bus Has DOE Roots

30.07.2008
Insight from Oak Ridge National Laboratory, commitment from two Michigan companies and funding from the Department of Energy have led to the commercialization of a lightweight urban transit bus with double the fuel efficiency of conventional hybrid buses.

This new green technology 40-foot bus features a high-strength stainless steel body and chassis and a hybrid power system that drives the bus primarily with stored electrical energy. This approach reverses the paradigm of conventional parallel hybrid designs that use electric energy only to supplement the acceleration and torque requirements of a diesel engine.

At the heart of the bus is a chassis made of Nitronic 30, a nitrogen-strengthened stainless steel that is stronger and stiffer than conventional steel. These attributes translate into less material required for a chassis, resulting in reduced weight.

“Nitronic stainless steel is incredibly durable and enables our chassis designs to have significantly longer service life vs. ordinary steel vehicles,” said Bruce Emmons, president of Autokinetics (http://www.autokinetics.com/) of Rochester, Mich., which developed the bus. “The fact that stainless is also 100 percent recyclable and more environmentally friendly to produce than aluminum makes this an ideal green raw material for vehicle structures.”

Additional advantages of Nitronic 30 include excellent mechanical properties at sub-zero and elevated temperatures along with low-temperature impact resistance and superb resistance to high-temperature oxidation. While this material is more costly than conventional steel, Emmons noted that the additional cost is offset by design innovation, parts consolidation and streamlined manufacturing processes.

“The benefits of improved strength-to-weight performance quickly compound to all other vehicles systems such as smaller tires, lighter brakes, batteries, motors and so on,” Emmons said. “By optimizing the total vehicle we have been able to cut the weight almost in half, which has led to performance improvements, most notably fuel economy gains.”

In addition to its reduced weight and hybrid power system, the bus will incorporate a number of advanced design features and advantages, said Gregory Fisher, chief executive officer of Fisher Coachworks (http://www.fishercoachworks.com/), which licensed the technology, has produced a prototype and plans full commercialization. The bus made its debut today and deliveries of the bus are expected to begin in 2009.

Some of the advantages are improved vehicle safety for passengers, lower cost, reduced noise and improved ride dynamics. The major advantage, though, will be in cost to operate, according to Fisher.

Specific contributions from ORNL included computer crash studies and infrared thermal imaging to evaluate the quality of some of the initial laser welds in the structure. Early tests showed some problems with the laser welding technique, so Autokinetics chose to use resistance spot welding in most places and tungsten inert gas welding for the remainder of the joining needs.

But even before its technical contributions, Emmons said ORNL had a huge impact.

“ORNL was the first to suggest the possibility of applying Autokinetics’ light-weighting ideas and technologies to the bus field,” Emmons said. “Without that insight, this program would never have happened.”

Phil Sklad of ORNL’s Materials Science and Technology Division served as the program manager and technical monitor and noted that DOE’s $2.5 million investment in this project is being rewarded with a revolutionary bus.

“This is a perfect example of how the Department of Energy, a national laboratory and the private sector can collaborate to produce something that is potentially of great value to society,” Sklad said.

Fisher Coachworks, located in Troy, Mich., is planning to use this patented technology for transit buses and other commercial vehicle market segments that would benefit from vastly improved fuel economy in urban stop and start applications. Fisher Coachworks was formed in 2007 to focus on production of advanced hybrids using an ultra-lightweight stainless steel unibody construction.

Funding for this project was provided by DOE’s Office of FreedomCAR and Vehicle Technologies Program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>