Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame network physicists create model to predict traffic patterns

12.11.2014

Researchers at the University of Notre Dame have designed a simple, yet highly accurate traffic prediction model for roadway transportation networks. They have recently published their work in the journal Nature Communications.

"Transportation networks and in particular the highway transportation network are like the body's circulatory system for the nation," says Zoltán Toroczkai, professor of physics at the University of Notre Dame, who co-authored the study with physics graduate student Yihui Ren and national and international collaborators.

The team's model is built on principles from physics similar to those that describe the current flows in circuits. However, it also addresses the uncontrolled human dimension for both the choice of destination and the choice of pathway to the destination.

The choice of destination is based on an earlier model by Filippo Simini, Marta González and others that takes into account the reasons why people travel, such as commuting to a job. That study is coupled with a model of the cost considerations people use to choose which path to take, such as favoring a quicker interstate route over a shorter but slower road.

"We tend to consider time-based costs rather than distanced-based costs when traveling," Toroczkai says. "The majority of people, at least in the U.S., are worried about the time they spend on the road. While it seems natural, our work demonstrates that quantitatively."

Researchers applied their model to the U.S. highway network with 174,753 road segments and 137,267 intersections and compared its predictions to actual observed traffic data. When the model assumed that people choose paths to save time, it was far more accurate than previous models including those based on adjustable parameters. The model was less accurate when it considered paths chosen to save distance, demonstrating that travelers put more value on saving time.

"The roadway network has evolved organically over hundreds of years, and its properties encode the modalities in which our economy interacts across space. However, unlike in electronic circuits in which we know precisely all the flows (currents) by design, it is much harder to determine flows in transportation networks, due to the human dimension of the traffic."

"It is based on the right principles--principles that actually describe human travel," Toroczkai says. "Its first-principles based nature is what is important." For this reason, the model can be directly used also when part of the network is disabled, perhaps by a natural disaster or nuclear event, to predict the impact on the remainder of the network.

Toroczkai, who is the co-director of the Interdisciplinary Center for Network Science and Applications at Notre Dame, co-authored the paper titled, "Predicting commuter flows in spatial networks using a radiation model based on temporal ranges" with Yihui Ren at the University of Notre Dame, Mária Ercsey-Ravasz of Babes-Bolyai University in Romania, Marta C. González of M.I.T, and Pu Wang of Central South University in Hunan, China.

Zoltán Toroczkai | EurekAlert!
Further information:
http://www.nd.edu/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>