Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser rescue system for serious accidents

29.11.2016

Better technology and modern materials increase the traffic safety and save human life. But they pose totally new challenges for the emergency personnel at the accident site. Because today, tools like hydraulic rescue cutters more and more often reach their limits. A mobile laser unit for rescue missions shall solve this problem. The Laser Zentrum Hannover e.V. (LZH), six project partners and eight associated partners have teamed up to develop this system.

In the past 25 years, the number of road traffic deaths has been drastically reduced, and the number of severely injured persons decreased significantly, too. Among others, the declining figures are due to improved passive safety. The use of high-tensile steel and composite materials adds to this.


Conventional rescue systems more and more often reach their limits with modern materials.

Photo: Stadt Dortmund – Institut für Feuerwehr- und Rettungstechnologie


The chances for rescue are much higher the faster a person can be freed from the vehicle.

Photo: Stadt Dortmund – Institut für Feuerwehr- und Rettungstechnologie

Time as a decisive factor

The higher vehicle stability achieved by using these materials, however, becomes a problem in the event of an accident. Because the available rescue systems, such as power, plasma or hydraulic rescue cutters require a lot of time to cut the car body, or they even fail in individual cases. Time, however, is crucial during a rescue mission. The faster a person is freed, the higher the chances to survive.

Using the laser at the accident site

This is where the project comes in: A compact laser unit shall be developed that can be used when conventional rescue tools reach their limits. With this system it shall be possible to cut modern materials in a short time, or to broach them so that they can be cut faster with conventional tools.

Moreover, it shall be investigated within the scope of the project how the safe use of the laser at the accident site can be guaranteed. Here, it is also being checked, for example, which shut-off devices are required for the system. In addition, the scientists evaluate which measures must be taken to protect the rescue team, the accident victim and uninvolved third parties. This includes curtains, mats and protection glasses.

Diversified consortium

The partners from many different sectors ensure that all relevant aspects are considered. Project partners of the LZH are: Coherent (Deutschland) GmbH, SGE Spezialgeräteentwicklung GmbH, WEBER-HYDRAULIK GmbH, eifeler Lasertechnik GmbH, LASERVISION GmbH & Co. KG and Stadt Dortmund – Institut für Feuerwehr- und Rettungstechnologie.

Associated project partners are: Bundesanstalt für Arbeitsschutz und -medizin, Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse, DB Fahrzeuginstandhaltung GmbH, DEKRA Automobil GmbH, GuS – Präzision in Kunststoff, Glas und Optik GmbH & Co. KG, Bundesanstalt Technisches Hilfswerk, Unfallkasse NRW and Volkswagen AG.

The project is being sponsored by the German Federal Ministry of Education and Research (BMBF) within the scope of the program “Civil safety – innovative rescue and safety systems” until October 2019.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>