Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Light for Vehicle-to-Infrastructure Communications

24.09.2015

In the context of an EU project that began in 2013 and will end in 2015, Siemens and its partners are testing ways in which the exchange of information between drivers and traffic lights can make traffic safer and more efficient.

A number of vehicles and traffic lights along two main traffic arteries in Newcastle, U.K, were recently equipped with communication units. Drivers receive information on the duration of the current light phase and an indication of the speed at which they are most likely to reach the green phases or whether they should turn off their engines at a red light.


The Communicating Cars initiative demonstrates the practical benefits of intelligent transport systems (ITS) and their suitability for everyday use on the roads of Europe.

Picture credits: NXP Semiconductors


Siemens und Partner geben den Startschuss für Testfahrt in die smarte Verkehrszukunft.

Whenever possible, the test vehicles also receive a green signal from the control center. Data on the flow of traffic and exhaust emissions will be collected until the end of this year. This information is expected to show that the technology can make traffic at intersections safer, more fluid, and more energy-efficient while lowering emissions. Newcastle University is heading the project, with Siemens and the city government as part of the team.

Experts believe that networking cars with each other and with traffic control centers is an important way to avoid congestion and accidents in urban traffic. The real-time exchange of warnings and information on traffic flow allows drivers to prepare for potentially challenging conditions.

Control centers can use the resulting data to fine-tune the switching patterns of their signaling systems. They can also grant priority to certain vehicles, such as emergency teams. Networked communication among cars and infrastructure is generally creating the conditions necessary for the future automation of urban traffic.

Real-Time Networking

The Newcastle tests are part of the EU’s Compass4D project. The project has been evaluating different applications of cooperative, intelligent traffic systems in seven cities. Siemens, one of the Compas4D partners, has long developed hardware and software solutions for cooperative traffic systems with Corporate Technology, its corporate research department, as well as the Mobility Division. Siemens is also involved in a number of European test fields.

In Newcastle, twelve vehicles belonging to an ambulance service, two electric cars provided by the university and 20 signaling systems were equipped with communication units. Ten times per second, on-board units in the vehicles transmit status messages to so-called roadside units, which are integrated into the traffic lights. The roadside units forward the information to the traffic control center. Communication takes place using a WLAN standard that was specially developed for intelligent traffic systems. Drivers can use an app to display the information from the control center on a tablet. They can check the countdown to the next light change and receive tips on the best route to take under current driving conditions. When a test vehicle reaches a point 200 meters from a traffic light, the light turns green whenever possible.

From Industrial Environments to Traffic Light Management

In the Newcastle project, Siemens is primarily responsible for the roadside units and the exchange of data between cars and the traffic control center. This includes integrating the roadside units with the app, the on-board unit and the traffic control software. The roadside units are based on Scalance systems, which were originally used for communications in industrial plants. In recent years, researchers with Corporate Technology have adapted these units for intelligent traffic systems and developed entirely new software for them. The Scalance systems have since been deployed in a number of test fields.
Norbert Aschenbrenner


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
https://www.siemens.com

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>