Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Light for Vehicle-to-Infrastructure Communications

24.09.2015

In the context of an EU project that began in 2013 and will end in 2015, Siemens and its partners are testing ways in which the exchange of information between drivers and traffic lights can make traffic safer and more efficient.

A number of vehicles and traffic lights along two main traffic arteries in Newcastle, U.K, were recently equipped with communication units. Drivers receive information on the duration of the current light phase and an indication of the speed at which they are most likely to reach the green phases or whether they should turn off their engines at a red light.


The Communicating Cars initiative demonstrates the practical benefits of intelligent transport systems (ITS) and their suitability for everyday use on the roads of Europe.

Picture credits: NXP Semiconductors


Siemens und Partner geben den Startschuss für Testfahrt in die smarte Verkehrszukunft.

Whenever possible, the test vehicles also receive a green signal from the control center. Data on the flow of traffic and exhaust emissions will be collected until the end of this year. This information is expected to show that the technology can make traffic at intersections safer, more fluid, and more energy-efficient while lowering emissions. Newcastle University is heading the project, with Siemens and the city government as part of the team.

Experts believe that networking cars with each other and with traffic control centers is an important way to avoid congestion and accidents in urban traffic. The real-time exchange of warnings and information on traffic flow allows drivers to prepare for potentially challenging conditions.

Control centers can use the resulting data to fine-tune the switching patterns of their signaling systems. They can also grant priority to certain vehicles, such as emergency teams. Networked communication among cars and infrastructure is generally creating the conditions necessary for the future automation of urban traffic.

Real-Time Networking

The Newcastle tests are part of the EU’s Compass4D project. The project has been evaluating different applications of cooperative, intelligent traffic systems in seven cities. Siemens, one of the Compas4D partners, has long developed hardware and software solutions for cooperative traffic systems with Corporate Technology, its corporate research department, as well as the Mobility Division. Siemens is also involved in a number of European test fields.

In Newcastle, twelve vehicles belonging to an ambulance service, two electric cars provided by the university and 20 signaling systems were equipped with communication units. Ten times per second, on-board units in the vehicles transmit status messages to so-called roadside units, which are integrated into the traffic lights. The roadside units forward the information to the traffic control center. Communication takes place using a WLAN standard that was specially developed for intelligent traffic systems. Drivers can use an app to display the information from the control center on a tablet. They can check the countdown to the next light change and receive tips on the best route to take under current driving conditions. When a test vehicle reaches a point 200 meters from a traffic light, the light turns green whenever possible.

From Industrial Environments to Traffic Light Management

In the Newcastle project, Siemens is primarily responsible for the roadside units and the exchange of data between cars and the traffic control center. This includes integrating the roadside units with the app, the on-board unit and the traffic control software. The roadside units are based on Scalance systems, which were originally used for communications in industrial plants. In recent years, researchers with Corporate Technology have adapted these units for intelligent traffic systems and developed entirely new software for them. The Scalance systems have since been deployed in a number of test fields.
Norbert Aschenbrenner


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
https://www.siemens.com

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>