Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Light for Vehicle-to-Infrastructure Communications

24.09.2015

In the context of an EU project that began in 2013 and will end in 2015, Siemens and its partners are testing ways in which the exchange of information between drivers and traffic lights can make traffic safer and more efficient.

A number of vehicles and traffic lights along two main traffic arteries in Newcastle, U.K, were recently equipped with communication units. Drivers receive information on the duration of the current light phase and an indication of the speed at which they are most likely to reach the green phases or whether they should turn off their engines at a red light.


The Communicating Cars initiative demonstrates the practical benefits of intelligent transport systems (ITS) and their suitability for everyday use on the roads of Europe.

Picture credits: NXP Semiconductors


Siemens und Partner geben den Startschuss für Testfahrt in die smarte Verkehrszukunft.

Whenever possible, the test vehicles also receive a green signal from the control center. Data on the flow of traffic and exhaust emissions will be collected until the end of this year. This information is expected to show that the technology can make traffic at intersections safer, more fluid, and more energy-efficient while lowering emissions. Newcastle University is heading the project, with Siemens and the city government as part of the team.

Experts believe that networking cars with each other and with traffic control centers is an important way to avoid congestion and accidents in urban traffic. The real-time exchange of warnings and information on traffic flow allows drivers to prepare for potentially challenging conditions.

Control centers can use the resulting data to fine-tune the switching patterns of their signaling systems. They can also grant priority to certain vehicles, such as emergency teams. Networked communication among cars and infrastructure is generally creating the conditions necessary for the future automation of urban traffic.

Real-Time Networking

The Newcastle tests are part of the EU’s Compass4D project. The project has been evaluating different applications of cooperative, intelligent traffic systems in seven cities. Siemens, one of the Compas4D partners, has long developed hardware and software solutions for cooperative traffic systems with Corporate Technology, its corporate research department, as well as the Mobility Division. Siemens is also involved in a number of European test fields.

In Newcastle, twelve vehicles belonging to an ambulance service, two electric cars provided by the university and 20 signaling systems were equipped with communication units. Ten times per second, on-board units in the vehicles transmit status messages to so-called roadside units, which are integrated into the traffic lights. The roadside units forward the information to the traffic control center. Communication takes place using a WLAN standard that was specially developed for intelligent traffic systems. Drivers can use an app to display the information from the control center on a tablet. They can check the countdown to the next light change and receive tips on the best route to take under current driving conditions. When a test vehicle reaches a point 200 meters from a traffic light, the light turns green whenever possible.

From Industrial Environments to Traffic Light Management

In the Newcastle project, Siemens is primarily responsible for the roadside units and the exchange of data between cars and the traffic control center. This includes integrating the roadside units with the app, the on-board unit and the traffic control software. The roadside units are based on Scalance systems, which were originally used for communications in industrial plants. In recent years, researchers with Corporate Technology have adapted these units for intelligent traffic systems and developed entirely new software for them. The Scalance systems have since been deployed in a number of test fields.
Norbert Aschenbrenner


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
https://www.siemens.com

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>